Bus Transceiver Overview Bus Transceivers for Vector CAN, CAN FD, LIN, FlexRay and J1708 Interfaces | CANcab/
CANpiggy | Transceiver | Baud rate
(max.) | Connector occupation Sub-D | Preferred area of application | Design ⁽¹⁾ | Special feature | |--|--|---|---|---|-----------------------|---| | 251 | PCA82C251 | 2 Mbit/s
high-speed | 2 = CAN_L
3 = GND
5 = Shield
7 = CAN_H | Automobile technology
(powertrain bus),
automation, air and
space flight, nautical
transportation | A, E | Very small propagation delay time: 24 ns
Suitable for 2 Mbit/s CAN | | 251opto
only CANcab
design variant
available | PCA82C251 | 1 Mbit/s
high-speed | 2 = CAN_L
3 = VB-
5 = Shield
7 = CAN_H | Automobile technology
(powertrain bus),
automation, air and
space flight, nautical
transportation | A | Galvanically isolated. Bus-side power supply is provided internally. | | 251mag
only CANcab
design variant
available | PCA82C251 | 2 Mbit/s
high-speed | 2 = CAN_L
3 = VB-
5 = Shield
7 = CAN_H | Automobile technology
(powertrain bus),
automation, air and
space flight, nautical
transportation | А | Galvanically isolated. Bus-side power supply is provided internally. Very small propagation delay time (37 ns). Suitable for 2 Mbit/s CAN | | 251fibre | PCA82C251+
LWL-Koppler:
HFBR1528
HFBR2528 | 500 kbit/s
high-speed | 2 = CAN_L
3 = VB-
5 = Shield
7 = CAN_H
9 = VB+ | Expanded networks with high baud rates | С | Two device parts, connected by a two-wire fibre optic cable. | | 1040mag | TJA1040 | 1 Mbit/s
high-speed | 2 = CAN_L
3 = VB-
4 = Split
5 = Shield
7 = CAN_H
9 = VB+ | Automobile technology
(powertrain bus),
automation, air and
space flight, nautical
transportation | A, E | Galvanically isolated.
Useful for partially powered networks.
Bus-side power supply is provided
internally. ⁽²⁾ | | 1041Amag | TJA1041A | 1 Mbit/s
high-speed | 2 = CAN_L
3 = VB-
4 = Split
5 = Shield
7 = CAN_H
9 = VB+ | Automobile technology
(powertrain bus),
automation, air and
space flight, nautical
transportation | A, E | Galvanically isolated. Wakeup-capable,
bus-side power supply optionally internal
or external 1218 V. ⁽²⁾ | | 1050mag | TJA1050 | 1 Mbit/s
high-speed | 2 = CAN_L
3 = VB-
5 = Shield
7 = CAN_H | Automobile technology
(powertrain bus),
automation, air and
space flight, nautical
transportation | A,E | Galvanically isolated. Bus-side power supply is provided internally. Low EME. (2) | | 1051cap
only CANpiggy
design variant
available | TJA1051 | 2 Mbit/s
high-speed
8 Mbit/s
CAN FD | 2 = CAN_L
3 = GND
5 = Shield
7 = CAN_H | Automobile technology
(powertrain bus, CAN
FD), automation, air and
space flight, nautical
transportation | Е | Galvanically isolated. Bus-side power
supply is provided internally.
Suitable for 2 Mbit/s CAN. ⁽²⁾
Suitable for CAN FD up to 8Mbit/s | | 1055cap
only CANpiggy
design variant
available" | TJA1055 | 125 kbit/s
low-speed | 2 = CAN_L
3 = VB-
5 = Shield
7 = CAN_H
9 = VB+ | Automobile technology
(body electronics bus) | Е | Galvanically isolated. Bus-side power supply opt. int. or ext. 1218 V. Fault-tolerant. ⁽²⁾ | | 1057Gcap
only CANpiggy
design variant
available | TJA1057G | 2 Mbit/s
high-speed
8 Mbit/s
CAN FD | 2 = CAN_L
3 = GND
5 = Shield
7 = CAN_H | Automobile technology
(powertrain bus, CAN
FD), automation, air and
space flight, nautical
transportation | Е | Galvanically isolated. Bus-side power supply is provided internally. Suitable for 2 Mbit/s CAN. ⁽²⁾ Suitable for CAN FD up to 8Mbit/s | | 5790opto c
only CANcab
design variant
available | AU5790 | 100 kbit/s
(HS mode)
40 kbit/s
(LS mode) | 3 = VB-
4 = 100 Ω (HS-Mode)
5 = Shield
7 = CAN_H
9 = VB+ | Automobile technology:
Single Wire CAN (SWC;
body electronics bus) | A | 100 Ω resistance can be activated automatically upon switching over to high-speed mode. Bus-side power supply opt. int. or ext. 1218 V. | | CANcab/
CANpiggy | Transceiver | Baud rate
(max.) | Connector occupation Sub-D | Preferred area of application | Design ⁽¹⁾ | Special feature | | |---|---|---|---|--|-----------------------|---|--| | 7356cap
only CANpiggy
design variant
available | NCV7356 | 100 kbit/s
(HS mode)
40 kbit/s
(LS mode) | 3 = VB-
4 = 100 Ω (HS-Mode)
5 = Shield
7 = CAN_H
9 = VB+ | Automobile technology:
Single Wire CAN (SWC;
body electronics bus) | E | $100~\Omega$ resistance can be activated automatically upon switching over to high-speed mode. Galvanically isolated. Bus-side power supply opt. int. or ext. $1218~V^{(2)}$ | | | 10011opto | B10011S | 250 kbit/s | 2 = CAN_L
3 = VB-
5 = Shield
7 = CAN_H
9 = VB+ | Commercial
vehicle technology
(truck&trailer)
ISO WD11992-1 | Α, Ε | Recommended for CAN applications in the commercial vehicle area. External voltage supply 1632 V required. | | | TWINcab
1041Amag
(2-Channel
cab) | 2 x TJA1041A
(Highspeed) | 1 Mbit/s
high-speed | 2 = CAN_L
3 = VB-
4 = Split
5 = Schirm
7 = CAN_H
9 = VB+ | Automobile technology
(powertrain bus),
automation, air and
space flight, nautical
transportation | В | Galvanically isolated. Wakeup-capable,
bus-side power supply optionally internal
or external 1218 V. | | | TWINcab
1054Amag
1041Amag
(2-Channel
cab) | TJA1054A
(Lowspeed)
TJA1041A
(Highspeed) | TJA1054A
low-speed
TJA1041A
high-speed | 1054Amag
2 = CAN_L
3 = VB-
4 = RT
5 = Shield
7 = CAN_H
9 = VB+
1041Amag
2 = CAN_L
4 = Split
5 = Shield
7 = CAN_H
9 = VB+
1041Amag
4 = Split
5 = Shield
7 = CAN_H
9 = VB+ | Automobile technology:
powertrain bus (high-
speed) and body elec-
tronics bus (lowspeed),
automation, air and
space flight, nautical
transportation | В | Galvanically isolated. Wakeup-capable, bus-side power supply optionally internal or external 1218 V. Switchable terminating resistors (only 1054Amag). Fault-tolerant. | | | LINcab/
LINpiggy | Transceiver | Baud rate
(max.) | Connector occupation Sub-D | Preferred area of application | Design ⁽¹⁾ | Special feature | | | | | | | | | For 12V and 24V LIN applications. Dominant / recessive stress functionality | | | 7269mag | TLE7269 | 20 kbit/s
(normal)
115 kbit/s
(flash) | 3 = VB-
4 = Pdis
5 = Shield
7 = LIN
9 = VB+ | Automobile technology ,
LIN1.x, LIN2.x and
SAE-J2602 applications
K-Line applications
(only LINpiggy) | Α, Ε | specifications 1.3, 2.0, 2.1 and SAE-J2602.
For 12V and 24V LIN applications.
Dominant / recessive stress functionality. | | | TWINcab
7269mag
(2-Channel
cab) | TLE7269 2 x TLE7269 | (normal)
115 kbit/s | 4 = Pdis
5 = Shield
7 = LIN | LIN1.x, LIN2.x and
SAE-J2602 applications
K-Line applications | А, Е | specifications 1.3, 2.0, 2.1 and SAE-J2602.
For 12V and 24V LIN applications. | | | TWINcab
7269mag
(2-Channel | | (normal) 115 kbit/s (flash) 20 kbit/s (normal) 115 kbit/s | 4 = Pdis
5 = Shield
7 = LIN
9 = VB+
3 = VB-
4 = Pdis
5 = Shield
7 = LIN | LIN1.x, LIN2.x and
SAE-J2602 applications
K-Line applications
(only LINpiggy)
Automobile technology ,
LIN1.x, LIN2.x and | · | specifications 1.3, 2.0, 2.1 and SAE-J2602. For 12V and 24V LIN applications. Dominant / recessive stress functionality. Normal mode: 20 kbit/s Flash mode: 115 kBit/s*. * depending on the bus physic the maximum data rate can | | | TWINcab
7269mag
(2-Channel
cab) | 2 x TLE7269 | (normal) 115 kbit/s (flash) 20 kbit/s (normal) 115 kbit/s (flash) Baud rate | 4 = Pdis
5 = Shield
7 = LIN
9 = VB+
3 = VB-
4 = Pdis
5 = Shield
7 = LIN
9 = VB+ | LIN1.x, LIN2.x and SAE-J2602 applications K-Line applications (only LINpiggy) Automobile technology , LIN1.x, LIN2.x and SAE-J2602 applications Preferred area | В | specifications 1.3, 2.0, 2.1 and SAE-J2602. For 12V and 24V LIN applications. Dominant / recessive stress functionality. Normal mode: 20 kbit/s Flash mode: 115 kBit/s*. * depending on the bus physic the maximum data rate can be up to 330 kbit/s | | | Miscellea-
neous Cabs/
Piggies | Transceiver | Baud rate
(max.) | Connector
occupation Sub-D | Preferred area of application | Design ⁽¹⁾ | Special feature | |--------------------------------------|---------------|---------------------|--|---|-----------------------|---| | EVA | User-specific | User-specific | User-specific | User-specific application | D | Evaluation kit: Mounting of the CANcab user-specifically with bus transceivers using pre-assembled breadboards. | | IOcab
8444opto | - | - | 1-4 = Digital IO
5 = PWM/
Capture
6 = GND
7-8 = Analog IO
9-12 = Digital IO
13 = GND
14-15 = Analog IO | Automobile and commercial vehicle technology, automation technology, air and space flight technology, marine technology | A | Galvanically isolated. Used for generation and measurement of analog and digital signals. | | IOpiggy 8642 | - | - | 1 = I/O, PWM
2,9,10 = I/O
13 = DGND
5/11 = I, PhotoMOS
4/12 = I, PhotoMOS
7,14 = Analog I/O
8,15 = Analog In
6 = AGND | Automobile and commercial vehicle technology, automation technology, air and space flight technology, marine technology | G | Galvanically isolated. Used for generation and measurement of analog and digital signals. | | J1708
65176opto | SN65176B | 9.6 kbit/s | 2 = A
3 = GND
5 = Shield
7 = B | Commercial vehicle
technology (powerbus,
body electronics bus) | A, E | Optically decoupled. Bus-side power supply is provided internally. | VB+, VB- = supply voltage at galvanically isolation. $V_Batt = \pm 12 V$ related to GND. ^{(1) =} For design type description see table "Designs and Connectors". ^{(2) =} No unwanted error frames are generated (e.g. during shutdown). ^{*}cap and *mag are the recommended transceiver and the successor of the *opto. The propagation delay time and the power consumption is with *cap option about 12–17% less, with *mag option about 10–15% less than with the *opto option. ## **Designs and Connectors** | Design name | Usable for ⁽³⁾ | Connection to hardware | Design | Connection to CAN or LIN bus | |---|--|------------------------|--|--| | A
CAN/LIN/J1708cab | CANcardXL
CANcardXLe | | vector Made in EU Patented | | | B
TWINcab | CANcardXLe | | CAN 1041Amag ⁸ / ₆ TWINcab CAN 1041Amag ⁸ / ₉ | 0 (1 2 3 4 5) (0
0 (1 2 3 4 5) (0 | | C
CANcab
(fibre optic cable) | CANcardXL
CANcardXLe | | vector C€ X LWL CANcab 251fibre *** | 5 (1, 2, 3, 4, 5) (5) | | D
CANcab
(cable and housing) | CANcardXL
CANcardXLe | | anwenderspezifisch A purchase de la company | 5 (3 3 4 5) () | | E
CAN/LIN/J1708piggy
(plug-in board
"Piggyback") | VN1600, VN8900,
VN7500, VN7600,
VT6x04,
CANcaseXL log,
CANboardXL,
CANister | | | | | FRpiggyC | VN7500, VN8972,
VX1131 | | Dimensions 45 x 25 x 13 mm | | | F
FRpiggy
(plug-in board
"Piggyback") | VN3300
VN3600
VN7600
VN8970
VT6204 | | Dimensions 71 x 38 x 13 mm | | | G
IOpiggy
(plug-in board
"Piggyback") | VN7500
VN8950
VN8970
VN8972 | | Dimensions 56 x 30 x 13 mm | | $^{^{(3)}}$ see http://www.vector.com/kb for a complete listing of compatibility for CABs/Piggies.