Eye diagram analysis for CAN FD

The eye diagram is an analysis method for evaluating the signal quality of transmission networks. Eye diagram analysis can help finding corrupting influences on CAN networks.

CAN networks can transmit information bit by bit from sender to partly distant receivers. The information transfer can, however, be easily corrupted by the network topology, cable length between the participants, line and terminating resistors as well as external electric influences. Both eye diagram analysis and serial bit mask analysis allow these influences to be identified and corrected early during the configuration phase of the CAN network.

Due to the higher and flexible bit-rate of the data phase, CAN FD is considerably more noise-sensitive than Classical CAN, which has a fixed bit-rate only for the entire frame. The transmission of CAN FD frames always begins with the lower bit-rate of the arbitration phase. A switch to the higher bit-rate of the data phase is made at the sampling point of the bit-rate switch (BRS) bit. At the sampling point of the cyclic redundancy check (CRC) delimiter bit, the bit-rate is switched back to the lower bit-rate. The shorter duration of the bits during the faster data phase has a negative effect on the signal quality, which can best be analyzed with an eye diagram. The signal quality is highly dependent on:

- Design and complexity of the bus topology e.g. line or star topology,
- Adversely selected cable routing and/or bus termination,
- Susceptibility of the system to higher transmission rates typical in vehicle networks,
- Cable properties, such as their impedances or shielding.

Creation of a classical eye diagram

During the network design, a configuration for the phase segments of the bit as well as their sampling points is created separately for the arbitration phase and the data phase. According to the CAN protocol, one bit is time-divided into four segments: a synchronization segment, a segment for compensating time delays, and two phase segments, which compensate the phase errors of the bit edges. The phase segments are often designated TSEG1 and TSEG2. The TSEG 1 summarizes the first phase segment and the compensation segment. Figure 1 shows the time division of a bit into the mentioned segments. The sampling point lies between the phase segments. TSEG2, on the other hand, corresponds to the phase segment which begins after the sampling point. Since the grid of the superimposed bits is displayed directly in the eye diagram, it is immediately apparent how well the superimposed bits fit into this grid.

The bit edges should ideally lie within the synchronization segment. The algorithm used here works like a real CAN controller. Due to the time delay of the bit edges, caused by the CAN transceiver delay and the jitter of the control units, CAN controllers must resynchronize at the transition from the recessive to the dominant bus level on the receiver side. This is a prerequisite for detecting the logic level of a bit at the set sampling point. With the adjustment of the phase segments, the robustness of the synchronization mechanism can be influenced. These
settings are usually checked using an eye diagram, which allows the user to visualize whether his controller settings are practical and meaningful. Due to the fact that CAN FD has two different bit-rates, it is advisable to create separate eye diagrams for the arbitration phase and the data phase.

With the software tools CANoe and CANalyzer from Vector, the user is able to configure a CAN network and record voltage signals using the Option Scope. After measuring, the user can perform an eye diagram analysis, which analyzes all received frames bit by bit and superimposes them graphically in a fixed time window. In this example, the time window is a percentage of the bit duration (Figure 1). The displayed bit segments show the configured controller settings. Possible deviations in the individual bits can be quickly identified in this view. With a good controller setting, the rising edges of all bits lie in the synchronization segment. If the bit signals also reach their dominant and recessive voltage levels uniformly, i.e. without overshoot, a robust bus topology and a correctly selected bus termination can be assumed. The diagram has an “eye” due to the fact that all the bits on the x-axis are normalized to the theoretical bit-width (reciprocal of the bit-rate), while the voltage values of the bits are plotted on the y-axis. For the described case, the eye would be wide open (Figure 2). In the opposite case, the eye would be closed, which is an indication of errors in the network structure (Figure 3). The data phase is analyzed in Figures 2 and 3 with a sampling point set to 70 % and a data-rate of 2000 kbit/s.

Further refinement of analysis criteria

In order to narrow down possible sources of error, it is recommended to create an eye diagram from different aspects. For this purpose, various filter options are provided:

- Frame type, for example CAN or CAN FD,
- CAN channel number,
- Control unit name,
- Defined bit sequences.

![Figure 1: Classical eye diagram with graphical representation of the phase segments of a CAN controller](Photo: Vector Informatik)
To further refine the criteria for evaluating the eye diagram, it is helpful to create a predefined theoretical eye in the form of a bit mask. For this purpose, the user generates a bit mask as a freely definable polygon, thus defining the “good” area, which may not be crossed by a voltage signal of any bit. It is useful to define a separate bit mask for the arbitration phase and for the data phase. Figure 4 shows an eye diagram with a bit mask, in which some bits violate the defined mask. In the background, the configured segments of the CAN controller are shown.

Serial bitmask analysis

So far, the classical eye diagram, which represents the overlapping of individual bits, has been considered. An alternative visualization is the serial bit analysis. In principle, both analysis procedures are performed identically. Only in the case of the serial bitmask analysis, the bits are displayed in the order sampled by an oscilloscope. Again, it is possible to define bit masks, which are displayed for every dominant and recessive bit. The advantage over the classic eye diagram is that bit errors are assigned directly bit by bit. It is also possible to analyze only part of the bit stream. The configuration possibilities already discussed for the eye diagram can also be applied to the serial bitmask analysis. Figure 5 shows all the bits of a defined analysis area. Each bit has a bit mask with the red mask indicating a violation in the first bit.

Automating the analysis process

Both analysis methods can be automated with the Vector product CANoe. To do this, the user must first define his test cases. For example, one test case is defined to analyze the data phase of all CAN FD frames and another test case for only the arbitration phase. For each test case, a specific bit mask can be used as a test criterion. If the bit mask is violated by the bit signal, the test case result will be negative. Each test case is automatically recorded, evaluated, and stored in a test report, so that the user can understand why a test case failed.

Conclusion

The methods described here for the analysis of a CAN/CAN FD network help to quickly identify and fix design faults or negative external influences. Eye diagram analysis with CANalyzer and CANoe is also available for other bus systems such as Flexray. With CANoe, the user also has the option to perform tests in a reproducible and automated manner via CAPL test sequences. Due to the high degree of automation and with suitable tools, such tests can be repeated with minimal effort.

An alternative approach for detecting protocol errors of a control unit is the analysis of different bit sequences of a frame. With this method, a distinction can for example be made between the bits which are transmitted during the acknowledge phase by all control units and those of a particular control unit.

Author

Mirko Donatzer
Vector Informatik
mirko.donatzer@vector.com
www.vector.com