Run-Time Measurement and Calibration of ECUs

Vector Solution Overview
Agenda

<table>
<thead>
<tr>
<th>Topics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to Measurement and Calibration</td>
</tr>
<tr>
<td>▶ What is Run-Time Measurement and Calibration?</td>
</tr>
<tr>
<td>▶ Where is Run-Time Measurement and Calibration used?</td>
</tr>
<tr>
<td>▶ What are the Typical Use Cases?</td>
</tr>
<tr>
<td>How does run-time measurement & calibration work?</td>
</tr>
<tr>
<td>▶ Measurement & Calibration Methodology</td>
</tr>
<tr>
<td>▶ ASAM AE MCD Standards (UDS/CCP/XCP & A2L)</td>
</tr>
<tr>
<td>CANape Overview</td>
</tr>
<tr>
<td>▶ Feature Summary</td>
</tr>
<tr>
<td>▶ Technical Details</td>
</tr>
<tr>
<td>▶ Option Packages</td>
</tr>
<tr>
<td>Q & A</td>
</tr>
</tbody>
</table>
What is Run-Time Measurement and Calibration?

- **Run-time** = while the ECU is running (no breakpoints allowed!)
- **Measurement** = reading data from the ECU memory
 - Monitoring a dynamic list of internal software signals
- **Calibration (aka Software Tuning)** = writing data to the ECU memory
 - Changing parameter values without needing to flash program

Many possible applications for development and test
Open standards are key enablers!
Where is Run-Time Measurement and Calibration Used?

Application Areas

- Run-time measurement and calibration strategies are commonly used to support the development of embedded control systems (ECUs)

Examples: Controllers used in mechatronic and electronic systems found in automobiles, commercial vehicles, power generators, etc...

- Diesel / Gas / Electric Powertrain
- Transmission / Steering / Brakes
- Suspension / Chassis / Driveline
- Power / Battery Management
- Passive / Active Safety / ADAS
- HVAC / Body Electronics
- Machines / Implements
- And many others...
What are the Typical Use Cases?

- **Functional Development**
 - Software unit test (on-target and model-based)
 - White-box testing by reading internal variables of control algorithms
 - Base calibration (on-target and model-based)

- **Application Testing**
 - Adding ECU SW access for HIL or Test Benches

- **System / Vehicle Development**
 - System / Vehicle calibration
 - Dyno / hot / cold / altitude test

Common Examples:

- Tracking algorithm states
- Calibrating algorithms to achieve target behavior
What are the Typical Use Cases?

Supporting Multi-Source Measurement Fusion

- **Multi-Source** = Interfacing to multiple source devices, simultaneously
- **Measurement** = Active or passive acquisition of signal data
- **Fusion** = Time synchronously combining data from multiple sources, enabling simultaneous visualization and recording of all data together

 > Providing a more comprehensive, systemic view of the application system

- Measure all data sources with a signal measurement tool!
Run-Time Measurement and Calibration with CANape

Agenda

<table>
<thead>
<tr>
<th>Topics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to Measurement and Calibration</td>
</tr>
<tr>
<td>▶ What is Run-Time Measurement and Calibration?</td>
</tr>
<tr>
<td>▶ Where is Run-Time Measurement and Calibration used?</td>
</tr>
<tr>
<td>▶ What are the Typical Use Cases?</td>
</tr>
</tbody>
</table>

How does run-time measurement & calibration work?

- Measurement & Calibration Methodology
- ASAM AE MCD Standards (UDS/CCP/XCP & A2L)

CANape Overview

- Feature Summary
- Technical Details
- Option Packages

Q & A
How does Run-time Measurement & Calibration Work?

Measurement Methodology: Monitoring Software Signals

Internal ECU software signals and states may be measured on demand.

At **run-time**, select any combination of signals you want to measure:

- Measure any persistent signal variables within the ECU software
- Configure the measurement at run-time, avoiding the need for ECU software changes
 - Tool-side configuration using industry-standard protocols
 - Select any desired combination of measurement signals
 - Adjust the measurement mode and sampling rate for each signal (CCP/XCP)

INPUT

- Raw input signals in driver SW
- Parameters

Application SWC

- Signals
 - Value 1: 0x03
 - Value 2: 0x22
 - Value 3: 0x55
 - Value X: 0x??
- Algorithm

OUTPUT

- Output signals in driver SW
- Raw input signals in driver SW
How does Run-time Measurement & Calibration Work?

Calibration Methodology: Live Parameter Calibration or “Software Tuning”

To optimize the performance of ECU algorithms, a calibrator can “tune” parameters used by the program to influence the output.

Reference data objects, such as:
- Parameters (1x1; scalars)
- Curves (1xN; 1-d arrays)
- Maps (NxN; 2-d arrays)

These reference data objects are not modified by the algorithm, but can be modified through calibration activities to affect the output of the system.
How does Run-time Measurement & Calibration Work?

ASAM AE MCD MC: Industry Standards for Measurement & Calibration

ASAM Vision

▶ “ASAM standards ensure that tools of a development process chain can be freely interconnected and allow a seamless exchange of data”

Advantages of Industry Standard Approaches

▶ Low Cost
 ▶ Off-the-shelf tools are purchased as needed, and do not require development time or upfront commitment

▶ Low Effort
 ▶ Project groups can focus on their product development tasks rather than having to specify and build tools

▶ Faster Ramp-Up
 ▶ Tools are available immediately, with a broad set of features to cover development needs throughout the whole process

▶ Compatibility Between Groups and Organizations
 ▶ Enables exchange of data between teams, suppliers, & OEMs. OEMs don’t have to deal with different tooling from each supplier.
How does Run-time Measurement & Calibration Work?

ASAM AE MCD MC: Industry Standards for Measurement & Calibration

- ASAM MCD 1MC standard ECU interfaces include CCP (CAN Calibration Protocol) and XCP (Universal Calibration protocol)

Diagram:
- Upper level automation system
- Measurement and calibration system
- ECU

ASAM MCD 3MC
- ECU description file
- *.A2L

ASAM MCD 2MC
- ECU memory address oriented mapping hex value to physical value for Speed:
- Example: Address: 0x1357
- Hex Value: 0x1fff
- Phys Value: 95 km/h

Communication Interfaces:
- RS232C, Ethernet, Microsoft COM, C-API (DLL)
- CAN, FlexRay, Ethernet, etc.
How does Run-time Measurement & Calibration Work?

ASAM AE MCD MC: Industry Standards for Measurement & Calibration

What is required to do ASAM Standard Run-Time Measurement and Calibration?

ECU Interface (1MC)

How do we send & receive ECU data?

- Via Bus Communication (embedded software)
 - Protocols: CCP/XCP/Diagnostics via SW drivers
- Via Hardware Interfaces
 - e.g. Vector VX1000 (Data Trace / JTAG)

Controller Description Database File (2MC)

- What SW objects are accessible in the ECU?
 - A2L databases describe the controller SW & HW

Measurement & Calibration System

- ASAM compliant MC System: Vector CANape

Vector offers solutions in all of these areas

- We can help you – just contact us!
How does Run-time Measurement & Calibration Work?

ASAM AE MCD 1MC: ECU Interfaces

Software Solutions
- Vector XCP embedded software drivers
 - Compatible with CAN, CAN-FD, J1939, Ethernet, FlexRay, LIN, DLLs, etc.
- Easy to implement
- Scalable features

Hardware Solutions
- Vector VX1000 interfaces
 - Connected via data trace ports
 - XCP on Ethernet to MC tool
 - Performance up to \(~50\times-1000\times\) CAN
- Architecture examples:
 - NXP/Renesas/ST: JTAG/Nexus/Aurora
 - TI (TMS570): RTP/DMM
 - Infineon: DAP/DAP2/HSCT
How does Run-time Measurement & Calibration Work?

ECU Interface Solutions – Choosing the right solution for your needs

- XCP-to-Data Trace
- XCP-to-JTAG
- XCP on Ethernet
- XCP on FlexRay
- CCP/XCP on CAN
- KWP, UDS, OBD

- Hardware-based
- Software-based

MC Bandwidth Requirement

More bandwidth needed due to:
- Faster application loop times
- Increased signal counts

ECU Application Content and Complexity
How does Run-time Measurement & Calibration Work?

ASAM AE MCD 1MC: Understanding XCP

XCP: Industry-standard interface protocol

- XCP: Universal (“X”) Calibration Protocol
 - Replacing CCP (CAN Calibration Protocol)
- Master-slave protocol
 - Reading & writing ECU memory

XCP offers several key advantages:

- Runs on common automotive / instrumentation channels - variants for CAN(FD), FlexRay, Ethernet, LIN, etc.
- Configure measurements at run-time
- Synchronous & polling data acquisition modes
- Advanced features
 - Rapid-Prototyping / bypassing
 - Flash programming
- Used effectively in a variety of application contexts – P/T, chassis, safety, body, etc.
How does Run-time Measurement & Calibration Work?

Vector VX1000 – High Performance ECU Interface

Hardware for interfacing to microcontroller data trace or debug ports

- **Modular hardware** supporting popular embedded microcontroller architectures
 - NXP/Freescale/ST – JTAG / Nexus / Aurora
 - Infineon – DAP/DAP2/Aurix
 - PCie – for ADAS Fusion ECUs

- **High performance** measurement & calibration
 - Up to **1000x** bandwidth of XCP on CAN
 - Faster loop times (<1ms) & Larger signal counts than XCP on CAN

- **Scalable features**
 - Optional bus interfacing (CAN/FD/FR/BR-R)
 - On-target bypassing
 - Flash programming
 - Cold-Start / First-Loop

- **XCP on Ethernet** tool interface

- **Easy integration** of SW driver and possibility for no-code operation (lower performance)
How does Run-time Measurement & Calibration Work?

VX1000 Modular System Implementation Concept

- **ECU**
- **VX POD**
- **VX Base Unit**
- **FIFO**
- **DPRAM**
- **XCP Driver**

VX1000 embedded SW driver supports data trace and RAM data copy methods.

“Driver-less” JTAG polling is also possible without a VX1000 SW driver.

DPRAM in VX1000 mirrors RAM in ECU.

Small FPGA-based POD connects to ECU debug port and forwards data to base unit.

ECU data trace transmission on serial cable

FIFO queue copies data between ECU data trace and DPRAM

XCP driver presents DPRAM to cal tool as if it were the ECU

ASAM MC System (e.g. CANape)
How does Run-time Measurement & Calibration Work?

A2L database

User: I need to measure Vehicle Speed...

CANape Measurement & Calibration System

<table>
<thead>
<tr>
<th>Memory Address</th>
<th>Name</th>
<th>Unit</th>
<th>Min</th>
<th>Max</th>
<th>Conv</th>
</tr>
</thead>
<tbody>
<tr>
<td>0xCF1A35D0</td>
<td>Vehicle Speed</td>
<td>MPH</td>
<td>0</td>
<td>200</td>
<td>(\pi \times \frac{\pi}{2})</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Memory Address</th>
<th>HEX value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0xCF1A35D0</td>
<td>0x1FD4</td>
</tr>
</tbody>
</table>

A2L Database Purpose:

- Contains all necessary details about the controller software and (optionally) the MC interface
- Allows CANape to abstract the technical details (Address/data type/conversions) for acquiring engineering values for signal data from the ECU
- **Vector’s ASAP2 Toolset** product provides A2L generation, merging, and other automation features
Agenda

<table>
<thead>
<tr>
<th>Topics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to Measurement and Calibration</td>
</tr>
<tr>
<td>▶ What is Run-Time Measurement and Calibration?</td>
</tr>
<tr>
<td>▶ Where is Run-Time Measurement and Calibration used?</td>
</tr>
<tr>
<td>▶ What are the Typical Use Cases?</td>
</tr>
<tr>
<td>How does run-time measurement & calibration work?</td>
</tr>
<tr>
<td>▶ Measurement & Calibration Methodology</td>
</tr>
<tr>
<td>▶ ASAM AE MCD Standards (UDS/CCP/XCP & A2L)</td>
</tr>
<tr>
<td>CANape Overview</td>
</tr>
<tr>
<td>▶ Feature Summary</td>
</tr>
<tr>
<td>▶ Technical Details</td>
</tr>
<tr>
<td>▶ Option Packages</td>
</tr>
<tr>
<td>Q & A</td>
</tr>
</tbody>
</table>
CANape at a Glance

An ASAM Standard MC System

- ASAM MCD compliance
- Vector is a participating & authoring member of ASAM MCD
- Support for the latest versions of the ASAM MCD Standard
- Over 16,000 licenses deployed worldwide across 250+ companies

Vector CANape v17

- Turn-key solution for measurement, calibration, and diagnostic use cases
 - High performance measurement
 - XCP data streams up to 50MB/s!
 - Distributed recording features
 - 64-bit (new for v17!)
 - Drag & drop interface
 - Best-in-class tool support included! (phone & email)

Broad feature set in base package

- Fully featured measurement, calibration, & diagnostics
- Data visualization, analysis, & mining
- Calibration data management
- Function & Scripting language
- MATLAB®/Simulink® integration
CANape Overview

Understanding the Differences Between Vector Tools

CANoe: Network and distributed system simulation and design, diagnostics, automated test, and all CANalyzer network analysis capability

CANalyzer: Measurement and analysis of networks & distributed systems

CANape: Run-time measurement, calibration, and diagnostic interface for ECU application development

vSignalyzer: Measurement data visualization, analysis, & data mining

vMeasure Exp: Run-time measurement of I/O, ECU, and network data

*Some vMeasure Expert components not included in CANape
CANape Overview

Feature Component Summary

<table>
<thead>
<tr>
<th>ONLINE Features</th>
<th>OFFLINE Feat.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECU Measurement</td>
<td>Calibration Data Management</td>
</tr>
<tr>
<td>ECU Calibration</td>
<td>Database Handling & Generation</td>
</tr>
<tr>
<td>Bus Monitoring</td>
<td>Offline Evaluation & Data Mining</td>
</tr>
<tr>
<td>Digital/Analog Measurement</td>
<td></td>
</tr>
<tr>
<td>Diagnostics</td>
<td></td>
</tr>
<tr>
<td>Automation & Test Benches</td>
<td></td>
</tr>
<tr>
<td>Audio / Video / Image Processing</td>
<td></td>
</tr>
<tr>
<td>Flash Programming</td>
<td></td>
</tr>
<tr>
<td>Bypassing</td>
<td></td>
</tr>
<tr>
<td>Data Logging</td>
<td></td>
</tr>
</tbody>
</table>

Model-based Development

Option Packages:

- Driver Assistance
- Simulink XCP Server
- vCDM Teams
- vMDM
- vCDM Studio
- ASAP2 Toolset*
- vSignalyzer
- vMeasure Expert*

*Some feature components not included within CANape package / sold separately
Device & Data Interfaces

CANape: Device & Data Support

Bus Protocols, Calibration Interfaces, & Diagnostics

- CANape: Device & Data Support
 - Vector XL family
 - USB, PCIe, PXI, Expresscard,…
 - USB
 - Firewire
 - Ethernet
 - RS 232
 - CAN
 - CAN-bus based I/O
 - IOcab
 - CSM MiniModuls
 - CAN-based I/O
 - VN1630/40
 - NI-DAQmx
 - DAIO driver
 - CSM XCP Gateway
 - Video, Audio
 - GPS

Vector VN16xx USB
- Vector XL family
- USB, PCIe, PXI, Expresscard,…

XCP 1.x, 2.0, Cooling

Vector VN16xx USB Network Interfaces

VCX3000
- VN3300
- VN3600

I/O, Multimedia, & GPS

VCX1000 HW XCP Interface

VCX1060 + VX1543 POD

VCX76xx FlexRay

VCX56xx Ethernet

VCX1060 + VX1543 POD

VCX76xx FlexRay

VCX56xx Ethernet

VCX1060 + VX1543 POD
Connect CSM Measurement Devices via CAN or Ethernet

Official Vector Partner for Measurement Technology

MiniModuls®

VN16XX

MiniModuls®

EtherCAT MiniModuls®

XCP-Gateway

XCP V1.4 – Time Synchronization

MC Hardware (e.g. VX1000)

Time Sync. via Broadcast

ECU

I/O Module

I/O Module

XCP on Ethernet

XCP on Ethernet

XCP on Ethernet

XCP on Ethernet

CANape
Easy to Use Interface

Drag and drop

- Drag a signal to the configuration
- Signals are added automatically to the active recorder
- Add signals to pre-existing windows
- Move/Copy signals from one window to another
- Quick and easy configuration design
CANape: Measurement System

CANape Measurement Data Flow

CANape Measurement Configuration

Input Data
- ECU Data
- FlexRay, CAN, LIN messages
- Analog, digital I/O signals
- Video/Audio/GPS signals

Data preparation
- MATLAB®/Simulink®
- User defined script functions
- Trigger/Filter
- Function DLLs

Multiple Recorder

Data Logging
- Data Storage

Data Display
- Signal oriented displays
- Message Traces
- Multimedia windows
Example Measurement Use Case – Transmission system

Measuring everything simultaneously, in one tool

<table>
<thead>
<tr>
<th>Transmission System</th>
<th>Signals Measured</th>
<th>CANape (MC System)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clutch actuators, temperatures, ignition/battery/sensor input voltages, pulse counts, etc....</td>
<td>Torque Reduction Request, Engine RPM, Output shaft speed, Selected Gear, any other bus signals to/from ECU, etc....</td>
<td>Example Data devices:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Data Acquisition Hardware connected via CAN, USB, Ethernet, PCMCIA, etc.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Capture digital, analog, thermocouple, pressure, PWM, sensors, etc...</td>
</tr>
<tr>
<td>OS / DRVs System SW</td>
<td>All software signals: Sensor interpretation, Actuator requests, algorithm states, System/OS, etc..</td>
<td>Data devices:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vector Interface Hardware Measure CAN, LIN, FlexRay, MOST, J1939, etc...</td>
</tr>
<tr>
<td>ECU HW</td>
<td></td>
<td>Data devices:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CCP, XCP, KWP2000, & UDS Measure any software signals w/o halting SW</td>
</tr>
</tbody>
</table>

Transmission System

- Photo by: A7N8X (wikipedia)

Signals Measured

- Clutch actuators, temperatures, ignition/battery/sensor input voltages, pulse counts, etc....

CANape (MC System)

- Example Data devices:
 - Data Acquisition Hardware connected via CAN, USB, Ethernet, PCMCIA, etc.
 - Capture digital, analog, thermocouple, pressure, PWM, sensors, etc...

- Data devices:
 - Vector Interface Hardware Measure CAN, LIN, FlexRay, MOST, J1939, etc...

- Data devices:
 - CCP, XCP, KWP2000, & UDS Measure any software signals w/o halting SW
Visualization & Data Logging Features

Visualization
- Powerful display windows
- Display both live & recorded data

Data Logging Features
- Acquire data from multiple devices simultaneously
 - All signals can be recorded into a single measurement file (MDF)
- Export of MDF to other formats
- Record data to multiple file recorders simultaneously
 - Each recorder can have a unique trigger and measurement list
- Record raw CAN traffic in BLF/MF4
- Multimedia files (.avi, .mp3, etc...)
- Distributed recording feature (multiple PCs)
Display of Multimedia Signals

Multimedia Window

- Record & display video signals
- Example: Rainy weather shown in video

Graphic Window

- Plot Sonogram in Graphing window: Visual representation of the frequencies in a sound
Calibration Feature Summary

Tune Software
- Visualize software parameters in engineering formats
- Tune at run-time
- Record & document calibrations
- Flash program calibrations
- Support for offline calibration
- Support for AUTOSAR calibration concept

Manage Parameter Sets
- CDM Studio Interface
 - Side-by-Side parameter sets comparisons
 - Fully Featured
 - Drag and drop

Scales Up: Enterprise Solution
- vCDM solution
Example Calibration Use Case – Transmission System

Run-Time Calibration: Tuning software during measurement

- Using a calibration interface, it is possible to manipulate parameter objects used by the algorithm at run-time.
- Run-time calibration saves effort in development iterations compared to older “Flash & Try” methods.

- Easy interface for tuning parameters, maps, & curves.
- Visualize software signals & states.
- Leverage new parameter values to update HEX files or embedded SW.

MC System (e.g. CANape)

ECU interface

Measurements

| Torque maps, shift-points, timing tables, sensor & actuator tables, gains, offsets, modes, etc. | Calibration |

TCM (ECU)
CANape: Diagnostic System

Diagnostic Feature Summary

UDS ISO 14229 Diagnostic Support

- Seamlessly integrate diagnostic and measurement/calibration functions
- Access to diagnostic data (raw & symbolic access), also OBD data
- Utilize scripts in diagnosing ECUs
- Support of CANdela-based Diagnostics (CDD/ODX)

Vector Security Manager integration (new for v17)

- Implementing security algorithms of OEM-specific Security Sources

Diagnostic Console

- Display of diagnostic response (positive and negative)
CANape: Panels

Custom Panels

- Easily build custom panels for:
 - Presentation of measurement or diagnostic data
 - Calibration of parameters
 - Execution of scripts
Mapping of Vehicle GPS data

- Now included in base CANape software package
- The GPS window in CANape allows users to visualize the current location of the vehicle based on acquired GPS data
- View position on a map live or after the measurement
 - Show data mining hits in GPS window
 - Plot multiple objects & sensor object data
- Several types of mapping software can be used:
 > MapPoint® (U.S.)
 > MappleX® (Japan)
 > OpenStreetMap (World)
 > Satellite images

Data is time synchronized by the global measurement cursor – When activated, all data shown is from the same instant of time.
Features for User Feedback During Testing

In-vehicle user interface features

Text to Speech:
- Audible announcement of values and trigger conditions, allowing the driver to focus on the road

Display Range Violations:
- Quickly identify values of interest among large numbers of signals

Floating Windows:
- Windows can be moved outside the CANape main frame to allow for convenient use of heads-up display monitors
Vertical use case support through the CANape Function & Scripting language

- **Functions**
 - Automatic calibration
 - Triggering
 - Virtual signal calculation
 - Online / Offline

- **Scripts**
 - Search MDF files
 - Parse data
 - Multi-pass capable
 - Output results
 - Global Variables
 - Write window / Text Log
 - Export MDF to other formats

```c
function My_Function (input, output)
{
  double  a = 1;
  long     b = 2;
  output = a + b*input;
  printf("The result is: %d", output);
  return output;
}
```

```c
SPrint(FileMDFName, "%s%s", File, File);
SPrint(FileMATName, "%s%s", File, File);
// remove existing file first
FileRemove(FileMATName);

// call the converter. The different:
// the vector.ini file of the <CANape
if(FileExists(FileMDFName) == 0) {
  do {
    // convert the MDF-File to a Matl.
    // been defined before by the con
    Result = ConvertMeasurementFile(F
    } while (Result != 0);
```
Easy Visualization and Analysis of Data

Easy Visualization
- Global Measurement Cursor
- One-click statistics dialog

Automation through Scripts
- Parse files programmatically
- Evaluate data, export data, and manage data mining

Virtual Signals
- CANape Functions or C/C++ DLLs
- MATLAB/Simulink models

Data Mining
- Define event logic
- Batch process entire directories
- Report generation with hits and files
Supporting model-based development

- Vector supports model-based development through a collection of features designed to facilitate tool cooperation between The Mathworks’ MATLAB/Simulink tool suite and CANape
- Provided free via the Vector MATLAB/Simulink MC Add-on package

CANape’s MATLAB/Simulink features:

- Model Explorer window
- Simulink blockset & DLL target
- Algorithm designer
- Export data in MATLAB formats
- .M & .MAT formats
- MATLAB automation of CANape
- xPC target® support
- Option: Simulink XCP Server

Vector is an official partner of The Mathworks®
CANape: MATLAB®/Simulink® Features

Model Explorer - Visualize Simulink® / Stateflow® Models in CANape

Model-based Advantages: Specification and documentation of your algorithm
- During model-based development, the algorithm is created as a model in Simulink
- The model is code-generated to integrate and deploy the software in the ECU target

Model Explorer: Interact with your algorithm, from a model perspective
- After code generation, the model itself still provides the best specification of the system
- To leverage the model when working with code generated software, CANape provides a special model view window that shows signals and parameters integrated in the model
Feature Package for the Validation of Driver Assistance Systems

- **Easily validate object detections** from a variety of driver assistance systems
 - Park Assist, Lane Keep, Adaptive Cruise, Blind Spot Detect, Emergency Brake, etc.
 - Use any object data acquired by CANape

- **Visualize objects live or offline** via bird’s eye views, video overlays, occupancy grids, and ADASIS-enabled GPS mapping
Run-Time Measurement and Calibration with CANape

Contact Information and Q & A

Thank you for your attention.

For detailed information about Vector and our products please visit us at:

www.vector.com

Presented By:

Jeff Rothenberg

Jeff.Rothenberg@vector.com

Vector North America, Inc.

Let us know how we can help you get started!

MATLAB®, Simulink®, Stateflow®, xPC Target®, Real-Time Workshop®, and other related products are copyrights or trademarks of The Mathworks® in the U.S. and other regions. NI-DAQmx® is a copyright of National Instruments™ in the U.S. and other regions. CSM and products are trademark/copyrights CSM GmbH. All other trademarks/copyrights belong to their respective owners in the U.S and elsewhere.
ADAS Logging

CANape V16 DHPR – 2080 MByte/s Write Performance via 2 x BRICK PC

Performance Test

Interfaces:
8 x VX1132 RADAR
4 x Full HD CAM

Recording on 2 x Brick PC

CANape DHPR:
Distributed High-Performance Recording feature
CANape Option “Driver Assistance” for ADAS Validation

Point Cloud “Scene” Visualizations