Agile is Eaten – But not yet Digested
Challenge: ACES and Fast Growth of Complexity

Agile must scale for **real industry needs**: Business, organization, process, technology
Vector Agile Solutions

Vector Supports Agile Projects Worldwide

Agile principles and elements
- Scrum teams
- Time-boxed sprints
- Continuous integration
- Epics, user stories
- Backlog, kanban
- Focus
- Human centered
- Simplicity

Vector projects
- Automotive OEM, e.g. Daimler, Ford
- Automotive Tier-1, e.g. Bosch, Schaeffler, ZF
- Non-automotive, e.g. ABB, Festo, Thales

The dimensions of scaling
- How to tailor?
 - Business
- How to scale?
 - Organization
 - Process
- Further scaling?
 - Technology

© 2018. Vector Consulting Services GmbH. All rights reserved. Any distribution or copying is subject to prior written approval by Vector. V1.0 | 2018-11-20
Vector Agile Solutions

Vector Benchmark: Agile AUTOSAR Production

Competitive Advantages with OEM-relevant features

Serviceability
- Innovative business models for OEMs
- App activation
- Feature updates
- Cybersecurity

Standardized SW and tools
- From implementation to configuration
- Standard tool chain (Component Development Kit, CDK) for several hundred developers with Gerrit, Git, Jenkins
- Component-Compatibility-Check (CCC) allows automatic test with each commit
- AUTOSAR tool-based code generation and dependency modeling
- Standardized BSW gives better quality
Agile Frameworks Have Different Focus and Applicability

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Scrum of Scrums (SoS)</th>
<th>Scaled Agile Framework (SAFe)</th>
<th>Large Scale Scrum (LeSS)</th>
<th>Disciplined Agile Delivery (DAD)</th>
<th>Vector ACE (Agile for Critical Engineering)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scope</td>
<td>SW, HW and Systems, flexible</td>
<td>Software</td>
<td>Software</td>
<td>Software</td>
<td>SW, HW and Systems</td>
</tr>
<tr>
<td>Differentiator</td>
<td>Scrum for all situations and scales</td>
<td>Complex with many artifacts, roles, guidelines</td>
<td>Flexibility by using only suggestions</td>
<td>Complex and coverage of many models</td>
<td>Critical systems</td>
</tr>
<tr>
<td>Underlying Technology</td>
<td>Scrum</td>
<td>Scrum and other agile principles, Lean</td>
<td>Scrum</td>
<td>Scrum / Lean</td>
<td>Scrum / Lean</td>
</tr>
<tr>
<td>Adoption</td>
<td>Used in a large number of companies</td>
<td>Used in several companies</td>
<td>Used in several companies</td>
<td>Usage has started</td>
<td>Usage has started</td>
</tr>
<tr>
<td>Scaling</td>
<td>Flexible, simple and suitable to different settings</td>
<td>Targets large companies, but perceived as heavy</td>
<td>Can be adapted to different settings</td>
<td>Can be adapted to different settings</td>
<td>Can be adapted to different settings, incl. safety and E/E HW/mechanics</td>
</tr>
<tr>
<td>Complexity</td>
<td>Low</td>
<td>High</td>
<td>Medium</td>
<td>Medium</td>
<td>Medium</td>
</tr>
<tr>
<td>Cost</td>
<td>Low</td>
<td>High</td>
<td>Medium</td>
<td>Medium</td>
<td>Low</td>
</tr>
<tr>
<td>Global teams</td>
<td>Feasible</td>
<td>Feasible</td>
<td>Feasible</td>
<td>Feasible</td>
<td>Feasible</td>
</tr>
</tbody>
</table>
Case Study (1/4): Continuous Safety and Security

Scaling agile

- “Me-too” time-to-market < 2 years
- Coverage of safety and security
- High perceived quality
- Integration of strategic Tier-1s
- Compliance with standards

Agile for critical systems

- Higher level scope
- Design scope
- Deductive analyses (FTA)
- Inductive analysis (FMEA)
- Requirements
- Design for dependability
- Continuous Safety and Security

Agile results

- Lean yet systematic methods for dependability
- Prevention of design failures
- Fast development of models, inherent evidence of models
- Integral approach for safety and security
- Integrity, maintainability by modelling in PREEvision

Focus: Avoid effect of failures

Concepts and implementation of dependability

Continuous Integration

Mechanisms of dependability

Deductive thinking

Model-based
Traceability from changes based on hierarchic modelling, analysis and tests
Case Study (3/4): Adequate Tool Support

Scenario: Perceived “small change” leads to negative impact on safety and security
Challenge: Continuous impact analysis and consistency

Approach: “Continuous” Safety Case

Based on **effect chain analysis** the related tasks for safety analysis update can be identified (e.g. are safety related operations affected by change)

Tooling is mandatory for efficient and consistent change handling.

PREEvision provides here complete consistency

PLM toolchain (e.g. PREEvision) has big impact on agile success in critical systems
Hierarchic agile teams ensure consistency, also for safety, security etc.
Lessons Learned and Look Ahead: Agile Scaling is Necessary – Yet not Easy

- Agile must be tailored and scaled according to the specific environment
- Heavy recipe-style frameworks do not address automotive needs
- With optimized agile tailoring the overall efficiency will increase significantly
- Managing change for organization and culture is biggest challenge

50% of agile transformations fail. Need for professional change management. Contact Vector.
Thank you for your attention.
For more information please contact us.

Vector Consulting Services

@VectorVCS
www.vector.com/consulting
consulting-info@vector.com
Phone: +49-711-80670-1520