Introducing Hardware Security Modules to Embedded Systems for Electric Vehicles charging according to ISO/IEC 15118
Agenda

- **Hardware Trust Anchors - General Introduction**
 Hardware Trust Anchors - Utilization within AUTOSAR
 ISO/IEC 15118 - Certificate Usage
 ISO/IEC 15118 - Impact on Embedded Systems
 Outlook
General Introduction to Hardware Trust Anchors (HTA)

- Hardware Trust Anchors (HTA)
 - Protect sensitive data (e.g. crypto material) in ways that software can not manipulate
 - Provide crypto functions (e.g. ECDSA signature generation) to unburden the host controller

- Different standardized feature sets for HTAs
 - Secure Hardware Extension (SHE)
 - Hardware Security Module (HSM)
 - Trusted Platform Module (TPM)

- Different brand names for HTA by different HW suppliers
 - Infineon: Aurix HSM / SHE+ driver
 - Renesas: Intelligent Cryptographic Unit (ICU)
 - Freescale: Crypto Service Engine (CSE)
 - ARM: Trust Zone
Hardware Trust Anchors - General Introduction

Hardware Security Module (HSM)

- **History**
 - Developed in EU-sponsored project EVITA
 - Consortium: Robert Bosch, BMW, Infineon, ...
 - Specs available via the EVITA web site

- **HSM design objectives**
 - Harden ECUs against attacks
 - SW as well as selected HW attacks
 - Provide HW acceleration for crypto functions
 - By offloading the Application Core
 - Support ECU to ECU communication protection
 - To securely transport sensitive information

- **EVITA HSM profiles**
 - **HSM full**
 - Support strong authentication (e.g. via RSA, ECC)
 - Support complex block ciphers
 - High performance
 - **HSM medium**
 - Secure ECU 2 ECU communication
 - **HSM small**
 - Secure critical sensors / actuators
 - Simple block ciphers
 - Low cost modules
Comparison of SHE and HSM

<table>
<thead>
<tr>
<th></th>
<th>SHE ~ HSM (small)</th>
<th>HSM (medium)</th>
<th>HSM (full)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integrity of Crypto Material</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Secure storage of symmetric crypto material</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Secure storage of asymmetric crypto material</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Dedicated CPU</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>HW support for symmetric cryptography</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>HW support for asymmetric cryptography</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Additional things to consider</td>
<td>+ Availability of HW</td>
<td>+ Allows Firmware Changes + SW security libraries can be executed in HSM</td>
<td>+ High Performance - Cost - Availability of HW</td>
</tr>
<tr>
<td>Summary</td>
<td>Cost effective when system doesn’t require asymmetric cryptography and functionality doesn’t need to be extended</td>
<td>Recommended when asymmetric cryptography is not required, but system shall be extendable</td>
<td>Recommended when high performance is required, i.e. for ISO/IEC 15118 PnP</td>
</tr>
</tbody>
</table>
Agenda

Hardware Trust Anchors - General Introduction

- **Hardware Trust Anchors - Utilization within AUTOSAR**
 - ISO/IEC 15118 - Certificate Usage
 - ISO/IEC 15118 - Impact on Embedded Systems
 - Outlook
Hardware Trust Anchors - Utilization within AUTOSAR

AUTOSAR 4.3 Security Architecture

- Crypto Service Manager - CSM
 - SWCs use CSM through RTE
 - BSW/CDDs use CSM by inclusion
 - CSM provides job queueing (priority)

- Crypto Interface – CRYIF
 - Supports dispatching of security jobs to HW or SW crypto drivers

- Crypto Driver – CRYDRV
 - Implementation of cryptographic functions
 - Either in SW or HW (HTA)
Agenda

Hardware Trust Anchors - General Introduction
Hardware Trust Anchors - Utilization within AUTOSAR

- ISO/IEC 15118 - Certificate Usage
- ISO/IEC 15118 - Impact on Embedded Systems
- Outlook
X.509 is an ITU-T standard for Public Key Infrastructures

- The following objects are part of the standard
 - Public Key Certificate (Digital Certificate)
 > Proves the ownership and provides information about the owner
 > Public Key belongs to Private Key only known by the owner
 - Attribute Certificate
 > Trustfully assigns additional attributes to the owner of a public key certificate
 - Certificate Revocation List
 > Allows to revoke certain certificates before they have expired
- X.509 certificates are widely used for electronic communication
 - Transport Layer Security (TLS) connections
 > In case the connection protects HTTP data, it’s called HTTPS
Public Key Infrastructure

ISO/IEC 15118 - Certificate Usage

V2G Root

MO Root

OEM Root

CPO Sub 1

Prov Sub 1

MO Sub 1

OEM Sub 1

CPO Sub 2

Prov Sub 2

MO Sub 2

OEM Sub 2

SECC Cert

Prov Service

Contract Cert

OEM Prov Cert
Transport Layer Security (TLS)

- Transport Layer Security (TLS) encrypts the communication between a client and a server

- TLS v1.2 is used with one of the two following cipher suites
 - TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256
 - TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256

- Derived requirements to an HSM
 - Support Elliptic Curve Diffie Hellman (ECDH(E))
 - Secure exchange of asymmetric keys over an unprotected channel
 - Support Elliptic Curve Digital Signature Algorithm (ECDSA)
 - Signatures guarantee authenticity and integrity
 - Support Advanced Encryption Standard (AES128)
 - Encrypts the transmitted data using a symmetric key
 - Support Secure Hash Algorithm 2 (SHA256)
 - Hash arbitrary amount of data to fixed length
Installation and Update of Certificates

- Certificates installed during production, possibly without using cryptographic operations
 - V2G Root Certificate(s)
 - Provisioning Certificate, incl. its Private Key

- Certificates installed in public space need to be protected using cryptographic operations
 - Contract Certificate(s), incl. Private Key(s)
 - Contract Sub Certificates

- Contract Certificate Chain may be installed by mechanism defined in ISO/IEC 15118
 - Certificate Installation
 - EV uses OEM Provisioning Certificate to receive new Contract Certificate Chain
 - Certificate Update
 - EV uses current Contract Certificate Chain to receive new Contract Certificate Chain
Certificate Installation

- Vehicle sends its OEM Provisioning Certificate to Charging Station incl. a list of the installed root certificates.
- Charging Station forwards this information to a Secondary Actor (SA) which then provides a Contract Certificate chain incl. private key.
- The parameters are validated using the SAProvisioningCertChain.
- The private key of the new Contract Certificate is decrypted using the AES key which is derived from the shared secret of the ECDH key exchange.

ISO/IEC 15118 - Certificate Usage

Certificate Installation

CertificateInstallationReqType
- CertificateInstallationReq
 - attributes
 - OEMProvisioningCert
 -ListOfRootCertificateIDs

CertificateInstallationResType
- CertificateInstallationRes
 - ResponseCode
 - SAProvisioningCertificateChain
 - ContractSignatureCertChain
 - DHpublickey
 - eMAID
Certificate Installation

- Public Key of A together with Private Key of B leads to same secret as Public Key of B together with Private Key of A
- Concatenated Key Derivation Function (KDF) reduces risk of brute force attacks
- Derived Key is used to encrypt provided data (Private Key of Contract Certificate) with AES128

- Derived requirements to an HTA (additional to TLS)
- Support Concatenated Key Derivation Function
- Accept externally created Private Keys
 > Being provided in an encrypted format
Agenda

Hardware Trust Anchors - General Introduction
Hardware Trust Anchors - Utilization within AUTOSAR
ISO/IEC 15118 - Certificate Usage

► ISO/IEC 15118 - Impact on Embedded Systems

Outlook
Without an HTA, cryptographic operations need to be calculated with SW library
 - In case SW library is synchronous, ECU will block for the time the operation takes

ECDSA signature generation on an MPC5668G@116Mhz
 - 204ms without cache and jump prediction
 - 102ms with cache and jump prediction

Typical task periods are 5 to 20 milliseconds
 - Issues with watch dog will occur
 - CAN may not work properly without proper prioritization in OS

Problems can be avoided by using an HSM (full)
 - ECDSA signatures can be generated/validated on HSM’s own core
 - HSM may not be faster, but host controller can continue its execution normally
 - HSM processes cryptographic operations asynchronously and reports back when done
Storage of Certificates

- Certificates and their Private Keys have to be stored non-volatile
- Cars parking in public space could be accessed by attackers
 - Attacker reads out Certificate and Private Key and charges “for free”
- HTAs protect memory, so only authorized persons can access Certificates and Private Keys
Current Situation and Future Developments

- Demands on the security increases
 - Cars are opening up to the outside world and are vulnerable for attacks
 - Stronger security requires more powerful hardware, such as HSM (full)

- Availability of HSM (full) is currently low
 - Use cases like ISO/IEC 15118 or Firmware Over-the-Air (FOTA) drive the demand
 - Availability of HSM (full) will increase in the future

- Working PKI of ISO/IEC 15118 doesn’t exist yet
 - Architecture of a possible PKI is currently being developed
 - Introduction of inductively charging vehicles speeds up the process
 - PKI for ISO/IEC 15118 should be available in the near future
Your questions are welcome!

Author:
Eisele, Fabian
Vector Germany