Improving the Exchange of Requirements and Specifications between Business Partners

RE 09, Atlanta, GA, USA
02. Sep. 2009

Christof Ebert, Vector
Manuel Reis Monteiro, Extessy
Matthias Recknagel, Daimler

An international client base from different industries:
Accenture, Alcatel-Lucent, Audi, BMW, Bosch, Conti, Daimler, Denso, Diehl, Ford, Hyundai, IBM, JCI, MAN, Porsche, Siemens, Telefonica o2, Thales, Valeo, Zeiss, ZF

Your Partner in Achieving Engineering Excellence.
Agenda

- Motivation: Collaboration in RE
- Exchanging Requirements
 - Principles
 - RIF
 - Industry Examples
- Summary
Why collaboration?

Traditional

- Isolated processes
- Manual data exchange
- Rework, inconsistency, no reuse, inefficiency

Organically grown tools

<table>
<thead>
<tr>
<th>Project mgmt</th>
<th>Design</th>
<th>Configurations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Req. Spec.</td>
<td>Impl.</td>
<td>CAD, Code, modelling</td>
</tr>
<tr>
<td>Unit test</td>
<td>Integration</td>
<td>ERP, Wikis, File systems</td>
</tr>
</tbody>
</table>

PLM

- Combination of processes with support tools and clear responsibilities
- Efficiency, consistency, quality, cost reduction

Persons

- Strategy
- Leadership
- Technology understanding
- Customer relationship management

Processes

- Project management
- Supplier management
- Requirements management
- Change control, configuration management

Tools

Challenges in the development process

Cost pressure and increasing integration of business processes across the boundaries of enterprises will dramatically change requirements engineering

- Closely connected process and tool chains
- Increased networking of product functions
- Efficient internal change and negotiation processes
- Efficient collaboration with development partners
- Systematic reuse
- Complexity management (functions, variants, plattforms, product lines)
- Transparency of development progress and product maturity
Case study: RE collaboration (1)

- **Goals**
 - New RE Tool, to create and access specifications in a distributed development setting
 - Standardized tool solution
 - 10% cost reduction

- **Approach**
 - Setup of project team with internal users under supervision of IT
 - Consideration of external stakeholders
 - Tool selection and acquisition
 - Initial business case, but no specific measurement of effort and errors
 - Configuration of workflows based on available tool functionality
 - Top-down-Initiative
 - Standardization
 - Goal is to generic
 - Stakeholder involvement
 - Tool-oriented without process focus
 - Artificial processes, based on tool capabilities

Case study: RE collaboration (2)

- **Implementation**
 - Estimation of benefits: Effort for specification creation with and without tool support
 - Data migration
 - Training for users
 - Use of support tool is mandatory

- **Result**
 - Savings are not achieved
 - Developers work in two parallel worlds: the familiar file system and the new tool
 - Overhead instead of improvement

Can it be done better?

- Mandatory guidelines
- Estimation of potentials
- Training is not sufficient for change
- Cost saving goals were not achieved
- Discontent
Agenda

- Motivation: Collaboration in RE
- Exchanging Requirements
 - Principles
 - RIF
 - Industry Examples
- Summary

Vision: Effective process coupling and collaboration

Concept
- Improve process then focus on the tool
- Negotiate goals with internal and external stakeholders

Implementation
- Requirements exchange and collaboration scenarios under realistic conditions
- Process and tool adaptation according to specified needs
- Organizational change management: validation, piloting phase, coaching, training, power-users, measurements
Challenge: Many different interfaces for RE collaboration

Strategy	Concept	Market Entry	Development	Evolution

- Project management, Risk management
- Supplier management
- Architecture, Design, Implementation
- Validation, Integration
- Change Management, Configuration Management
- Quality Management, Quantitative Management

Approach: Collaborative Requirements Engineering

Distributed RE

Requirements Development (Contractor)	Analysis (Supplier)

Systems and software engineering | Change / configuration management
Methodology: Requirements Interchange Format (RIF)

- De facto standard to exchange requirements documents (already requirements lingua franca in automotive requirements exchange, standardization ongoing via ProSTEP)
- Open, tool independent XML schema
- Alternative to MS-Word, CSV, PDF and vendor-specific dialects (e.g., DOORS) with mutually agreed syntax to exchange requirements
- Currently deployed in Automotive, Rail, and Medical Industries.

Language: The RIF format

Example requirement specified in a COTS RE tool

The same requirement “translated” to RIF
- Requirements are detailed as SpecObjects in XML
- XHTML for formatting
- GUID for unique reference
- Requirements (or elements) can be (hierarchically) grouped in SPECGroups
- Files for exchange
Interworking: Different tools speak one language

Collaboration: Requirements exchange in the supply chain
History: Requirements exchange with change history

Agenda

- Motivation: Collaboration in RE
- Exchanging Requirements
 - Principles
 - RIF
 - Industry Examples
- Summary
Results: Improved Performance of the Supplier

Approach
- Six Sigma process analysis
- Systematic requirements engineering process for the supplier
- Formalized commitment on agreed requirements
- Change management
- Single source for all requirements

Results
- Change rate has been reduced from 70% to ca. 15%
- Win-win partnership
- Performance improvement by 1/3
- Efficiency improvement for supplier and contractor

Collaborative requirements engineering improves performance and reduces change rate.

Source: Alcatel-Lucent, Vector, 2008

Summary (1/4): Strong push towards innovative RE

Cost pressure and increasing integration of business processes require **RE collaboration along the supply chain**

- Integrated linking of artifacts across the supply chain (e.g. requirements, specifications)
- Efficient collaboration beyond enterprise boundaries (e.g. OEM and Supplier)
- Consistent data management across versions and variants and suppliers (e.g. requirements, specifications, calibration data, references to acceptance test)

Coming together is a beginning. Staying together is progress.
Working together is success.

— Henry Ford
Summary (2/4): Requirements Interchange Format (RIF)

Requirements Interchange Format (RIF) has been established and is increasingly used in different industries

- Version 1.2 active and released
- Three levels of exchange anticipated (Level 1: ASCII text, Level 2: embedded Files, Level 3: Multimedia and semantics) and currently in review
- Supported by tools vendors (e.g., IBM, Vector)
- Independent translation tools available (e.g., Extessy Excerpt)
- Standardization ongoing via ProSTEP
- More Details: http://prostep.org/rif

Summary (3/4): Change management is biggest challenge

Coupling heterogeneous process and tools is an enormous challenge which demands organizational change management

- Define the business process of supply chain management
- Embed a suitable RE process architecture either bottom up (i.e., supplier to clients) or top-down (i.e., customer to suppliers)
- Adopt transparent interfaces, systematic exchange rules, and one requirements exchange format (syntax + semantics!)
- Adjust tools and templates (e.g., mapping of database fields and content across tools)
- Pilot the bi-directional exchange (hint: use a tool like Extessy Excerpt as a reference to check clean, bidirectional exchange)
- Learn and further improve towards more efficient collaboration
Summary (4/4): Tangible benefits from better collaboration

Improved supplier management
- Single source concept of requirements across organizational boundaries
- Exchange of traceability and change information between different parties reduces defects and misunderstandings

Improved efficiency
- Speed in exchanging information and collaborating on solutions
- Less manual exchange where small adoptions must be continuously maintained for consistency

Reduced product life-cycle cost
- Consistency across different requirements artifacts
- Less rework from insufficient change handling
- Reduced dependency on proprietary tools, thus ensuring a future-safe investment into your requirements base

Thank You for Your Attention.

Contacts and further information:

christof.ebert@vector.com

m.monteiro@extessy.com

matthias.recknagel@daimler.com

Your Partner in Achieving Engineering Excellence.