
Software Quality Management

Author: Dr. Christof Ebert

Affiliation: Vector Consulting Services GmbH, Ingersheimer Straße 24, D-70499 Stuttgart, Germany

Do not copy! Copyright is with the author and with Taylor & Francis publishing group

Contact: Christof.Ebert@vector.com, www.vector.com/consulting

Abstract:

It is difficult to imagine our world without software. Since software is so ubiquitous, we need to stay

in control. We have to make sure that the systems and their software run as we intend – or better. Only

if software has the right quality, we will stay in control and not suddenly realize that things are going

awfully wrong. Software quality management is the discipline that ensures that the software we are us-

ing and depending upon is of right quality. With solid understanding and discipline in software quality

management, we can be sure that our products will deliver according to expectations, both in terms of

customer and market commitments as well as business performance. This article provides a brief

overview on concepts and application of software quality management. It is driven by practical expe-

riences from many companies and is illustrated with best practices so that readers can transfer these

concepts to their own environments.

Keywords:

Quality management, customer satisfaction, software, CMMI, SPICE, ISO 9001, reliability, cost of

quality, cost of non-quality, defect detection, defect prediction, knowledge-base, quality control, quali-

ty assurance, verification, validation, test, review.

Acknowledgements

Some parts of sections III, IV, V, VI and VII appeared first in Ebert, C., and R.Dumke: Software

Measurement. Copyrights: Springer, Heidelberg, New York, 2007. Used with permission. We recom-

mend reading that book as an extension of the quantitative concepts mentioned in this article.

Author Biography:

Dr. Christof Ebert is managing director at Vector Consulting Services. He supports clients around the

world to improve product strategy and product development and to manage organizational changes.

He sits on a number of advisory and industry bodies and teaches at the University of Stuttgart.

Contact him at christof.ebert@vector.com

2

SOFTWARE QUALITY MANAGEMENT

Christof Ebert
Vector Consulting Services GmbH

Ingersheimer Straße 24, D-70499 Stuttgart, Germany
E-mail: Christof.Ebert@vector.com

Abstract: It is difficult to imagine our world without software. Since software is so ubiquitous, we

need to stay in control. We have to make sure that the systems and their software run as we intend – or

better. Only if software has the right quality, we will stay in control and not suddenly realize that

things are going awfully wrong. Software quality management is the discipline that ensures that the

software we are using and depending upon is of right quality. With solid understanding and discipline

in software quality management, we can be sure that our products will deliver according to expecta-

tions, both in terms of customer and market commitments as well as business performance. This arti-

cle provides a brief overview on concepts and application of software quality management. It is driven

by practical experiences from many companies and is illustrated with best practices so that readers can

transfer these concepts to their own environments.

Keywords: Quality management, customer satisfaction, software, CMMI, SPICE, ISO 9001, reliabil-

ity, cost of quality, cost of non-quality, defect detection, defect prediction, knowledge-base, quality

control, quality assurance, verification, validation, test, review.

I. INTRODUCTION

It is not that it has been tried and has failed,

it is that it has been found difficult and not tried.

- Gilbert Keith Chesterton

Computers and software are ubiquitous. Mostly they are embedded and we don’t even realize where

and how we depend on software. We might accept it or not, but software is governing our world and

society and will continue further on. It is difficult to imagine our world without software. There would

be no running water, food supplies, business or transportation would disrupt immediately, diseases

would spread, and security would be dramatically reduced – in short, our society would disintegrate

rapidly. A key reason our planet can bear over six billion people is software. Since software is so

ubiquitous, we need to stay in control. We have to make sure that the systems and their software run as

3

we intend – or better. Only if software has the right quality, we will stay in control and not suddenly

realize that things are going awfully wrong. Software quality management is the discipline that en-

sures that the software we are using and depending upon is of right quality. Only with solid under-

standing and discipline in software quality management, we will effectively stay in control.

What exactly is software quality management? To address this question we first need to define the

term “quality”. Quality is the ability of a set of inherent characteristics of a product, service,

product component, or process to fulfill requirements of customers [1]. From a management and

controlling perspective quality is the degree to which a set of inherent characteristics fulfills require-

ments. Quality management is the sum of all planned systematic activities and processes for cre-

ating, controlling and assuring quality [1]. Fig. 1 indicates how quality management relates to the

typical product development. We have used a V-type visualization of the development process to illus-

trate that different quality control techniques are applied to each level of abstraction from requirements

engineering to implementation. Quality control questions are mentioned on the right side. They are

addressed by techniques such as reviews or testing. Quality assurance questions are mentioned in the

middle. They are addressed by audits or sample checks. Quality improvement questions are mentioned

on the left side. They are addressed by dedicated improvement projects and continuous improvement

activities.

Implementation

System analysis

Requirements
engineering

Production /
operation

Validation

System and
software design Verification

User Needs Maintenance

Does it
work?

Does it work
together?

Does it
deliver what
is expected?

Does it do
what we want?

Quality management

Does it fulfill
specific

requirements?

Does it
comply to

standards?

Does it fit to
corporate
strategy?

Do we need
better

processes?

Implementation

System analysis

Requirements
engineering

Production /
operation

Validation

System and
software design Verification

User NeedsUser Needs MaintenanceMaintenance

Does it
work?

Does it work
together?

Does it
deliver what
is expected?

Does it do
what we want?

Quality management

Does it fulfill
specific

requirements?

Does it
comply to

standards?

Does it fit to
corporate
strategy?

Do we need
better

processes?

Fig. 1: Quality management techniques

Software quality management applies these principles and best practices to the development, evolution

and service of software. Software quality management applies to products (e.g., assuring that it meets

reliability requirements), processes (e.g., implementing defect detection techniques), projects (e.g., de-

signing for quality) and people (e.g., evolving quality engineering skills).

Software quality is a difficult topic, because there is no defined software quality standard with objec-

4

tives and methods that apply to each product. Software quality has many facets, such as reliability,

maintainability, security, safety, etc. Even cost can be considered a quality attribute – and it is often

misinterpreted when products are designed to be of low cost and after they are released to the market

suddenly have high after-sales cost. It is also difficult because there is no absolute level of quality!

Quality attributes might contradict each other, such as increasing the security level by encryption and

related techniques almost always negatively impacts efficiency and speed. Quality has economic im-

pacts and depends on the corporate strategy. It is not helpful to simply state “we are a quality compa-

ny” or “we need perfectionism” if there is nobody to pay for it. Quality therefore must be considered

always as a topic inherent to the entire life-cycle of a product. Quality should be considered and speci-

fied during product concept and strategy activities, it must be carefully designed into the product, then

it needs to be measured and verified by a multitude of activities along the life-cycle, and finally it has

to be assured as long as the product and its derivatives are in use.

Software quality management is not at a standstill. With the speed at which software engineering is

evolving, quality management has to keep pace. While the underlying theory and basic principles of

quality management, such as quality assurance or quality control, remain invariant in the true sense

(after all, they are not specific to software engineering), the application of quality management to spe-

cific contexts and situations is continuously extended. Many new application areas and methods have

emerged in the recent years, such as defect prediction techniques or Six Sigma concepts. Standards

have emerged which we use and explain in their practical usage. We will introduce in this article to

product and service quality standards such as ISO 9001 and improvement frameworks such as the

CMMI. It underlines that software quality management applies to such various domains as engineering

and maintenance of IT-systems, application software, mobile computing, Web design, and embedded

systems. The article is pragmatic by nature and will help you as a reader to apply concepts to your own

environment. It will detail major concepts such as defect prediction, detection, correction and preven-

tion. And it will explain relationships between quality management activities and engineering process-

es.

In this article we use several abbreviations and terms that might need some explanation. Generally we

will use the term “software” to refer to all types of software-driven products, such as IT systems, IT

services, software applications, embedded software and even firmware. The term “system” is used in a

generic sense to refer to all software components of the product being developed. These components

include operating systems, databases, or embedded control elements, however, they do not include

hardware (which would show different reliability behaviors), as we emphasize on software products in

this article. CMMI is the Capability Maturity Model Integration; ROI is return on investment; KStmt

is thousand delivered executable statements of code (we use statements instead of lines, because

statements are naturally the smallest unit designers deal with conceptually); PY is person-year and PH

is person-hour. A failure is the deviation of system operation from requirements, for instance, the non-

availability of a mobile phone connection. A defect is the underlying reason in the software that causes

5

the failure when it is executed, for instance, the wrong populating of a database. The concept of a de-

fect is developer-oriented. Reliability is the probability of failure-free execution of a program for a

specified period, use and environment. We distinguish between execution time which is the actual

time that the system is executing the programs, and calendar time which is the time such a system is in

service. A small number of defects that occur in software that is heavily used can cause a large number

of failures and thus great user dissatisfaction. The number of defects over time or remaining defects is

therefore not a good indicator of reliability.

II. QUALITY CONCEPTS

The long-term profitability of a company is heavily impacted by the quality perceived by customers.

Customers view achieving the right balance of reliability, market window of a product and cost as

having the greatest effect on their long-term link to a company [2]. This has been long articulated, and

applies in different economies and circumstances. Even in restricted competitive situations, such as a

market with few dominant players (e.g., the operating system market of today or the database market

of few years ago), the principle applies and has given rise to open source development. With the com-

petitor being often only a mouse-click away, today quality has even higher relevance. This applies to

Web sites as well as to commodity goods with either embedded or dedicated software deliveries. And

the principle certainly applies to investment goods, where suppliers are evaluated by a long list of dif-

ferent quality attributes.

Methodological approaches to guarantee quality products have lead to international guidelines (e.g.,

ISO 9001 [3]) and widely applied methods to assess the development processes of software providers

(e.g., SEI CMMI [4,5]). In addition, most companies apply certain techniques of criticality prediction

that focus on identifying and reducing release risks [6,7,8]. Unfortunately, many efforts usually con-

centrate on testing and reworking instead of proactive quality management [9].

Yet there is a problem with quality in the software industry. By quality we mean the bigger picture,

such as delivering according to commitments. While solutions abound, knowing which solutions work

is the big question. What are the most fundamental underlying principles in successful projects? What

can be done right now? What actually is good or better? What is good enough – considering the im-

mense market pressure and competition across the globe?

A simple – yet difficult to digest and implement – answer to these questions is that software quality

management is not simply a task, but rather a habit. It must be engrained in the company culture. It is

something that is visible in the way people are working, independent on their role. It certainly means

that every single person in the organization sees quality as her own business, not that of a quality man-

ager or a testing team. A simple yet effective test to quickly identify the state of practice with respect

to quality management is to ask around what quality means for an employee and how he delivers ac-

cording to this meaning. You will identify that many see it as a bulky and formal approach to be done

6

to achieve necessary certificates. Few exceptions exist, such as industries with safety and health im-

pacts. But even there, you will find different approaches to quality, depending on culture. Those with

carrot and stick will not achieve a true quality culture. Quality is a habit. It is driven by objectives and

not based on believes. It is primarily achieved when each person in the organization knows and is

aware on her own role to deliver quality.

Quality management is the responsibility of the entire enterprise. It is strategically defined, di-

rected and operationally implemented on various organizational levels. Fig. 2 shows in a simplified

organizational layout with four tiers the respective responsibilities to successfully implement quality

management. Note that it is not a top-down approach where management sets unrealistic targets that

must be implemented on the project level. It is even more important that continuous feedback is pro-

vided bottom-up so that decisions can be changed or directions can be adjusted.

Enter-
prise

Business
unit

Product line /
department

Projects

- Operational targets
- Improvement programs
- Management system
- Customer feedback

- Operational targets
- Improvement programs
- Management system
- Customer feedback

- Specific project, process
and product objectives

- Plan, do, check, act
(control, assurance)

- Specific project, process
and product objectives

- Plan, do, check, act
(control, assurance)

- Strategy
- Improvement objectives
- Scorecard
- Quality policy

- Strategy
- Improvement objectives
- Scorecard
- Quality policy

Policy,
direction,
objectives,
KPIs

Monitoring,
feedback,
corrective
action

Enter-
prise

Business
unit

Product line /
department

Projects

Enter-
prise

Business
unit

Product line /
department

Projects

- Operational targets
- Improvement programs
- Management system
- Customer feedback

- Operational targets
- Improvement programs
- Management system
- Customer feedback

- Specific project, process
and product objectives

- Plan, do, check, act
(control, assurance)

- Specific project, process
and product objectives

- Plan, do, check, act
(control, assurance)

- Strategy
- Improvement objectives
- Scorecard
- Quality policy

- Strategy
- Improvement objectives
- Scorecard
- Quality policy

Policy,
direction,
objectives,
KPIs

Monitoring,
feedback,
corrective
action

Fig. 2: Quality management within the organization

Quality is implemented along the product life-cycle. Fig. 3 shows some pivotal quality-related activi-

ties mapped to the major life-cycle phases. Note that on the left side strategic directions are set and a

respective management system is implemented. Towards the right side, quality related processes, such

as test or supplier audits are implemented. During evolution of the product with dedicated services and

customer feedback, the product is further optimized and the management system is adapted where

necessary.

It is important to understand that the management system is not specific to a project, but drives a mul-

titude of projects or even the entire organization. Scale effects occur with having standardized pro-

cesses that are systematically applied. This not only allows moving people to different projects with-

out long learning curve but also assures proven quality at best possible efficiency. A key step along all

these phases is to recognize that all quality requirements can and should be specified in quantitative

terms. This does not mean “counting defects” as it would be too late and reactive. It means quantifying

quality attributes such as security, portability, adaptability, maintainability, robustness, usability, relia-

7

bility and performance as an objective before the design of a product [1].

• Evaluate market /
business needs

• Define own
position and
quality strategy

• Communicate
quality policy

• Implement and
communicate
management
system

• Walk the talk

• Agree an optimi-
zed feature set

• Align objectives
with estimates

• Prioritize specific
quality require-
ments

• Define specific
quality processes

• Agree supplier
quality manage-
ment

• Assure the project
will deliver as
committed

• Execute quality
processes (e.g.,
verification,
validation, checks,
audits)

• Mitigate risks
• Achieve optimal

market entry with
right quality level

• Optimize life-cycle
performance
(quality, cost,
usage, changes)

• Optimize / reduce
life-cycle cost

• Manage repair
and replacement

• Improve services
and sales

• Adjust manage-
ment system

Strategy Concept Evolution
Market entry

Development

• Evaluate market /
business needs

• Define own
position and
quality strategy

• Communicate
quality policy

• Implement and
communicate
management
system

• Walk the talk

• Agree an optimi-
zed feature set

• Align objectives
with estimates

• Prioritize specific
quality require-
ments

• Define specific
quality processes

• Agree supplier
quality manage-
ment

• Assure the project
will deliver as
committed

• Execute quality
processes (e.g.,
verification,
validation, checks,
audits)

• Mitigate risks
• Achieve optimal

market entry with
right quality level

• Optimize life-cycle
performance
(quality, cost,
usage, changes)

• Optimize / reduce
life-cycle cost

• Manage repair
and replacement

• Improve services
and sales

• Adjust manage-
ment system

Strategy Concept Evolution
Market entry

Development
Strategy Concept Evolution

Market entry

Development

Fig. 3: Quality management along the product life-cycle

A small example will illustrate this need. A software system might have strict reliability constraints.

Instead of simply stating that reliability should achieve less than one failure per month in operation,

which would be reactive, related quality requirements should target underlying product and process

needs to achieve such reliability. During the strategy phase, the market or customer needs for reliabil-

ity need to be elicited. Is reliability important as an image or is it rather availability? What is the per-

ceived value of different failure rates? A next step is to determine how these needs will be broken

down to product features, components and capabilities. Which architecture will deliver the desired re-

liability and what are cost impacts? What component and supplier qualification criteria need to be es-

tablished and maintained throughout the product life-cycle? Then the underlying quality processes

need to be determined. This should not be done ad-hoc and for each single project individually but by

tailoring organizational processes, such as product life-cycle, project reviews, or testing to the specific

needs of the product. What test coverage is necessary and how will it be achieved? Which test equip-

ment and infrastructure for interoperability of components needs to be applied? What checklists

should be used in preparing for reviews and releases? These processes need to be carefully applied

during development. Quality control will be applied by each single engineer and quality assurance will

be done systematically for selected processes and work products. Finally the evolution phase of the

product needs to establish criteria for service request management and assuring the right quality level

of follow-on releases and potential defect corrections. A key question to address across all these phas-

es is how to balance quality needs with necessary effort and availability of skilled people. Both relates

to business, but that is at times overlooked. We have seen companies that due to cost and time con-

straints would reduce requirements engineering or early reviews of specifications and later found out

that follow-on cost were higher than what was cut out. A key understanding to achieving quality and

8

therefore business performance has once been phrased by Abraham Lincoln: “If someone gave me

eight hours to chop down a tree, I would spend six hours sharpening the axe.”

III. PROCESS MATURITY AND QUALITY

The quality of a product or service is mostly determined by the processes and people developing and

delivering the product or service. Technology can be bought, it can be created almost on the spot, and

it can be introduced by having good engineers. What matters to the quality of a product is how they

are working and how they introduce this new technology. Quality is not at a stand-still, it needs to be

continuously questioned and improved. With today’s low entry barriers to software markets, one thing

is sure: There is always a company or entrepreneur just approaching your home turf and conquering

your customers. To continuously improve and thus stay ahead of competition, organizations need to

change in a deterministic and results-oriented way. They need to know and improve their process ma-

turity.

The concept of process maturity is not new. Many of the established quality models in manufacturing

use the same concept. This was summarized by Philip Crosby in his bestselling book “Quality is Free”

in 1979 [10]. He found from his broad experiences as a senior manager in different industries that

business success depends on quality. With practical insight and many concrete case studies he could

empirically link process performance to quality. His credo was stated as: “Quality is measured by the

cost of quality which is the expense of nonconformance – the cost of doing things wrong.”

First organizations must know where they are, they need to assess their processes. The more detailed

the results from such an assessment, the easier and more straightforward it is to establish a solid im-

provement plan. That was the basic idea with the “maturity path” concept proposed by Crosby in the

1970s. He distinguishes five maturity stages, namely

 Stage 1: Uncertainty

 Stage 2: Awakening

 Stage 3: Enlightening

 Stage 4: Wisdom

 Stage 5: Certainty

These five stages were linked to process measurements. Crosby looked into the following categories

of process measurement: Management understanding and attitude, quality organization status, problem

handling, cost of quality as percentage of sales, quality improvement actions with progress and overall

organizational quality posture.

The concept of five maturity stages further evolved in the software engineering domain under the lead

of Watts Humphrey and his colleagues in the 1980s to eventually build the Capability Maturity Model

[11]. Effective process improvement can be achieved by following the widely-used Capability Ma-

turity Model Integration (CMMI), originally issued by the Software Engineering Institute [4,5].

9

Based on structuring elements of maturity levels, goals and practices, the CMMI offers a well-defined

appraisal technique to assess your own or your suppliers’ processes and to benchmark performance. It

extends the “classical” ISO 9001 to an improvement view integrating the systems engineering, acqui-

sition and all engineering processes along the product life-cycle. ISO 15504 is the world-wide stand-

ard for improvement frameworks and supplier assessments [12]. It has been derived from experiences

with the Capability Maturity Model during the nineties. A similar but less used process improvement

framework is the SPICE model. SPICE stands for “software process improvement and capability de-

termination”. Both frameworks, namely CMMI and SPICE, are fully compatible and based on ISO

15504, which governs capability assessments on a global scale.

Let us look more closely to the CMMI as it has the widest usage in software and IT industries world-

wide to implement quality processes. The CMMI provides a framework for process improvement and

is used by many software development organizations. It defines five levels of process maturity plus an

underlying improvement framework for process maturity and as a consequence, quality and perfor-

mance. Table 1 shows the five maturity levels of the CMMI and what they imply in terms of engineer-

ing and management culture. It is structured by so-called process areas which can be seen as contain-

ers with goals a process must meet in order to deliver good results and best industry practices that can

be used to achieve these process goals.

Table 1: The five maturity levels of the CMMI and their respective impact on performance

CMMI Maturity
Level

Title What it means

5 Optimizing Continuous process improvement on all levels. Business objectives
closely linked to processes. Deterministic change management.

4 Managed Quantitatively predictable product and process quality. Well-
managed, business needs drive results.

3 Defined Standardized and tailored engineering and management process.
Predictable results, good quality, focused improvements, reduced
volatility of project results, objectives are reached.

2 Repeatable Project management and commitment process. Increasingly pre-
dictable results, quality improvements.

1 Initial Ad-hoc, chaotic, poor quality, delays, missed commitments.

As an example we can take the “Requirements Management” process area which one such goal, name-

ly, “requirements are managed and inconsistencies with project plans and work products are identi-

fied.” Furtheron the CMMI provides so-called generic practices that equally apply to each process area

and drive institutionalization and culture change. There are five such generic goals with one allocated

to each level, namely (1) “achieve specific goals”, (2) “institutionalize a managed process”, (3) “insti-

tutionalize a defined process”, (4) “institutionalize a quantitatively managed process”, and (5) “institu-

tionalize an optimizing process”. The first of these generic goals underlines that first the basic func-

tional content of a process needs to be implemented. The four subsequent goals build upon each other

10

and show the path to maturity by first managing a process, then building on previous experiences and

defining the process, then managing the process quantitatively, and finally to continuously improve

the process by removing common causes of variation. In order to see the effectiveness, efficiency and

performance of a single process area, measurements are applied that suit the needs of each of these

five levels..

Why do software organizations embark on frameworks such as the CMMI or SPICE to improve pro-

cesses and products? There are several answers to this question. Certainly it is all about competition.

Companies have started to realize that momentum is critical: If you stand still, you fall behind! The

business climate and the software marketplace have changed in favor of end users and customers.

Companies need to fight for new business, and customers expect process excellence. A widely used

and industry-proven process improvement framework such as the CMMI offers the benefit to improve

on a determined path, to benchmark with other companies and to apply worldwide supplier audits or

comparisons on a standardized scale.

Such process improvement frameworks can provide useful help if introduced and orchestrated well. A

key success factor is to not get trapped into certification as the major goal. This was a disease towards

the end of last century, where many companies claimed having quality processes just because they had

certificates on the walls. Since quality was not entrenched in their culture, they continued with the

same practices and ad-hoc firefighting style they had before. The only difference was that somewhere

they had “the book” where lots of theoretic processes were described to pass an audit. But engineers

were still driven into projects with insufficient resources and customer commitments were still made

before understanding impacts of changes. As a result such companies delivered insufficient quality

with highly inefficient processes and thus faced severe problems in their markets. At times such com-

panies and their management would state that ISO 9001 or CMMI are of no value and only drive

heavy processes, but as we have learned in the introductory chapters of this article, it was essentially a

failure – their failure – of quality leadership and setting the right directions.

Let us see how to avoid such traps and stay focused on business. The primary answer is to follow an

objective-driven improvement approach, with objectives closely connected to business needs. Using

the CMMI and its process areas for an objective-driven improvement increment consists of the follow-

ing steps:

1. Identify the organization’s business objectives and global improvement needs.

2. Define and agree on the organization’s key performance indicators (KPIs) based on the organiza-

tion’s business objectives as the primary instrument to relate improvement and performance to

individual objectives and thus drive culture change bottom-up and top-down.

3. Identify the organization’s areas of weakness or areas where they are feeling the most pain inter-

nally or from customers from e.g., root cause analysis, customer surveys, and so on.

4. Commit to concrete and measurable improvement objectives determined on a level where they

are understandable and obvious how to implement.

11

5. Identify those CMMI Process Areas (PAs) that will best support improvements for the areas

identified in Step 3 and provide a return on investment (ROI).

6. Perform an initial “gap analysis” of the PAs identified in Step 5 to identify strengths and weak-

nesses and to baseline initial performance measurements, such as efficiency, effectiveness, quali-

ty, cost, etc.

7. Develop a plan for those PAs that you want to focus on first and make sure that the plan is suffi-

ciently detailed to see milestones, responsibilities, objectives and actions along the way until the

improvement objectives resulting from step 4 are reached.

8. Implement change and measure progress against the committed improvement objectives from

step 4.

9. Follow up results, risks and performance with senior management on a periodic basis to assure

that global objectives of step 2 are achieved.

The trend in the industry as a whole is growing towards higher maturity levels. In many markets such

as government, defense and automotive the clear demand is for a maturity level of 2 or 3. In supplier

markets it can well be maturity levels 4 or 5 which is a strong assurance that your supplier not only has

processes defined, but that he manages his processes quantitatively and continuously improves.

It is all about business: Your competitors are at least at this same place (or ahead of you). And they

carefully look to their processes and continuously improve them. You might neglect it and claim that

your products and market position are far from competition. Well just look towards the speed of

change in IT and software markets. Be it Microsoft loosing ground to Google or the many IT entries to

Fortune 500 disappearing within three to five years totally, the message is that they all thought that

they have a safe position. The road to IT and software success is littered by the many skeletons of

those who once thought that they are invincible and in consequence forgot to pay attention to clients

and own performance. The goal thus is to continuously improve engineering processes, lower costs,

increase adherence to commitments and improve product quality.

IV. DEFECTS – PREDICTION, DETECTION, CORRECTION AND PREVENTION

To achieve the right quality level in developing a product it is necessary to understand what it means

not to have insufficient quality. Let us start with the concept of defects. A defect is defined as an im-

perfection or deficiency in a system or component where that component does not meet its require-

ments or specifications which could yield a failure. Causal relationship distinguishes the failure caused

by a defect which itself is caused by a human error during design of the product. Defects are not just

information about something wrong in a software system or about the progress in building up quality.

Defects are information about problems in the process that created this software. The four questions to

address are:

1. How many defects are there and have to be removed?

12

2. How can the critical and relevant defects be detected most efficiently?

3. How can the critical and relevant defects be removed most effectively and efficiently?

4. How can the process be changed to avoid the defects from reoccurring?

These four questions relate to the four basic quality management techniques of prediction, detection,

correction and prevention. The first step is to identify how many defects there are and which of

those defects are critical to product performance. The underlying techniques are statistical methods of

defect estimation, reliability prediction and criticality assessment. These defects have to be detected by

quality control activities, such as inspections, reviews, unit test, etc. Each of these techniques has their

strengths and weaknesses which explains why they ought to be combined to be most efficient. It is of

not much value to spend loads of people on test, when in-depth requirements reviews would be much

faster and cheaper. Once defects are detected and identified, the third step is to remove them. This

sounds easier than it actually is due to the many ripple effects each correction has to a system. Regres-

sion tests and reviews of corrections are absolutely necessary to assure that quality won’t degrade with

changes. A final step is to embark on preventing these defects from re-occurring. Often engineers and

their management state that this actually should be the first and most relevant step. We agree, but ex-

perience tells that again and again, people stumble across defect avoidance simply because their pro-

cesses won’t support it. In order to effectively avoid defects engineering processes must be defined,

systematically applied and quantitatively managed. This being in place, defect prevention is a very

cost-effective means to boost both customer satisfaction and business performance, as many high-

maturity organizations such as Motorola, Boeing or Wipro show [1,13].

Defect removal is not about assigning blame but about building better quality and improving the pro-

cesses to ensure quality. Reliability improvement always needs measurements on effectiveness (i.e.,

percentage of removed defects for a given activity) compared to efficiency (i.e., effort spent for detect-

ing and removing a defect in the respective activity). Such measurement asks for the number of resid-

ual defects at a given point in time or within the development process.

But how is the number of defects in a piece of software or in a product estimated? We will outline the

approach we follow for up-front estimation of residual defects in any software that may be merged

from various sources with different degrees of stability. We distinguish between upfront defect estima-

tion which is static by nature as it looks only on the different components of the system and their in-

herent quality before the start of validation activities, and reliability models which look more dynami-

cally during validation activities at residual defects and failure rates.

Only a few studies have been published that typically relate static defect estimation to the number of

already detected defects independently of the activity that resulted in defects [8,14], or the famous er-

ror seeding [15] which is well known but is rarely used due to the belief of most software engineers

that it is of no use to add errors to software when there are still far too many defects in, and when it is

known that defect detection costs several person hours per defect.

Defects can be easily estimated based on the stability of the underlying software. All software in a

13

product can be separated into four parts according to its origin:

 Software that is new or changed. This is the standard case where software had been designed es-

pecially for this project, either internally or from a supplier.

 Software reused but to be tested (i.e., reused from another project that was never integrated and

therefore still contains lots of defects; this includes ported functionality). This holds for reused

software with unclear quality status, such as internal libraries.

 Software reused from another project that is in testing (almost) at the same time. This software

might be partially tested, and therefore the overlapping of the two test phases of the parallel pro-

jects must be accounted for to estimate remaining defects. This is a specific segment of software

in product lines or any other parallel usage of the same software without having hardened it so

far for field usage.

 Software completely reused from a stable product. This software is considered stable and there-

fore it has a rather low number of defects. This holds especially for commercial off the shelf

software components and open source software which is used heavily.

The base of the calculation of new or changed software is the list of modules to be used in the com-

plete project (i.e., the description of the entire build with all its components). A defect correction in

one of these components typically results in a new version, while a modification in functionality (in

the context of the new project) results in a new variant. Configuration management tools are used to

distinguish the one from the other while still maintaining a single source.

To statically estimate the number of residual defects in software at the time it is delivered by the au-

thor (i.e., after the author has done all verification activities, she can execute herself), we distinguish

four different levels of stability of the software that are treated independently [1]:

f = a × x + b × y + c × z + d × (w – x – y – z)

with

 x: the number of new or changed KStmt designed and to be tested within this project. This soft-

ware was specifically designed for that respective project. All other parts of the software are re-

used with varying stability.

 y: the number of KStmt that are reused but are unstable and not yet tested (based on functionality

that was designed in a previous project or release, but was never externally delivered; this in-

cludes ported functionality from other projects).

 z: the number of KStmt that are tested in parallel in another project. This software is new or

changed for the other project and is entirely reused in the project under consideration.

 w: the number of KStmt in the total software – i.e., the size of this product in its totality.

The factors a-d relate defects in software to size. They depend heavily on the development environ-

ment, project size, maintainability degree and so on. Our starting point for this initial estimation is ac-

tually driven by psychology. Any person makes roughly one (non-editorial) defect in ten written lines

14

of work. This applies to code as well as a design document or e-mail, as was observed by the personal

software process (PSP) and many other sources [1,16,17]. The estimation of remaining defects is lan-

guage independent because defects are introduced per thinking and editing activity of the programmer,

i.e., visible by written statements.

This translates into 100 defects per KStmt. Half of these defects are found by careful checking by the

author which leaves some 50 defects per KStmt delivered at code completion. Training, maturity and

coding tools can further reduce the number substantially. We found some 10-50 defects per KStmt de-

pending on the maturity level of the respective organization [1]. This is based only on new or changed

code, not including any code that is reused or automatically generated.

Most of these original defects are detected by the author before the respective work product is re-

leased. Depending on the underlying individual software process, 40–80% of these defects are re-

moved by the author immediately. We have experienced in software that around 10–50 defects per

KStmt remain. For the following calculation we will assume that 30 defects/KStmt are remaining

(which is a common value [18]. Thus, the following factors can be used:

 a: 30 defects per KStmt (depending on the engineering methods; should be based on own data)

 b: 30 × 60% defects per KStmt, if defect detection before the start of testing is 60%

 c: 30 × 60% × (overlapping degree) × 25% defects per KStmt (depending on overlapping degree

of resources)

 d: 30 × 0.1–1% defects per KStmt depending on the number of defects remaining in a product at

the time when it is reused

The percentages are, of course, related to the specific defect detection distribution in one’s own histor-

ical database (Fig. 4). A careful investigation of stability of reused software is necessary to better sub-

stantiate the assumed percentages.

Defined

3

Repeatable

2

Initial

1

0% 0% 5% 15% 65% 15%

5F/KLOC

1% 2% 7% 30% 50% 10%

3F/KLOC

DesignRequire-
ments

Maturity
Level Coding Unit Test

Integration
System Test

Post
Release

2F/KLOC

2% 5% 28% 30% 30% <5%

Sources: Alcatel, Capers Jones, Siemens

Defined

3

Repeatable

2

Initial

1

0% 0% 5% 15% 65% 15%

5F/KLOC

0% 0% 5% 15% 65% 15%

5F/KLOC

1% 2% 7% 30% 50% 10%

3F/KLOC

1% 2% 7% 30% 50% 10%

3F/KLOC

DesignRequire-
ments

Maturity
Level Coding Unit Test

Integration
System Test

Post
Release

2F/KLOC

2% 5% 28% 30% 30% <5%

2F/KLOC

2% 5% 28% 30% 30% <5%

Sources: Alcatel, Capers Jones, Siemens

Fig. 4: Typical benchmark effects of detecting defects earlier in the life-cycle

Since defects can never be entirely avoided, different quality control techniques are used in combina-

15

tion for detecting defects during the product life-cycle. They are listed in sequence when they are ap-

plied throughout the development phase, starting with requirements and ending with system test:

 Requirements (specification) reviews

 Design (document) reviews

 Compile level checks with tools

 Static code analysis with automatic tools

 Manual code reviews and inspections with checklists based on typical defect situations or critical

areas in the software

 Enhanced reviews and testing of critical areas (in terms of complexity, former failures, expected

defect density, individual change history, customer’s risk and occurrence probability)

 Unit testing

 Focused testing by tracking the effort spent for analyses, reviews, and inspections and separating

according to requirements to find out areas not sufficiently covered

 Systematic testing by using test coverage measurements (e.g., C0 and C1 coverage) and im-

provement

 Operational testing by dynamic execution already during integration testing

 Automatic regression testing of any redelivered code

 System testing by applying operational profiles and usage specifications.

We will further focus on several selected approaches that are applied for improved defect detection be-

fore starting with integration and system test because those techniques are most cost-effective.

Note that the starting point for effectively reducing defects and improving reliability is to track all de-

fects that are detected. Defects must be recorded for each defect detection activity. Counting defects

and deriving the reliability (that is failures over time) is the most widely applied and accepted method

used to determine software quality. Counting defects during the complete project helps to estimate the

duration of distinct activities (e.g., unit testing or subsystem testing) and improves the underlying pro-

cesses. Failures reported during system testing or field application must be traced back to their primary

causes and specific defects in the design (e.g., design decisions or lack of design reviews).

Quality improvement activities must be driven by a careful look into what they mean for the bottom

line of the overall product cost. It means to continuously investigate what this best level of quality re-

ally means, both for the customers and for the engineering teams who want to deliver it.

One does not build a sustainable customer relationship by delivering bad quality and ruining his repu-

tation just to achieve a specific delivery date. And it is useless to spend an extra amount on improving

quality to a level nobody wants to pay for. The optimum seemingly is in between. It means to achieve

the right level of quality and to deliver in time. Most important yet is to know from the begin of the

project what is actually relevant for the customer or market and set up the project accordingly. Objec-

tives will be met if they are driven from the beginning.

We look primarily at factors such as cost of non-quality to follow through this business reasoning of

16

quality improvements. For this purpose we measure all cost related to error detection and removal

(i.e., cost of non-quality) and normalize by the size of the product (i.e., normalize defect costs). We

take a conservative approach in only considering those effects that appear inside our engineering activ-

ities, i.e., not considering opportunistic effects or any penalties for delivering insufficient quality.

The most cost-effective techniques for defect detection are requirements reviews [1]. For code re-

views, inspections and unit test are most cost-effective techniques aside static code analysis. Detecting

defects in architecture and design documents has considerable benefit from a cost perspective, because

these defects are expensive to correct at later stages. Assuming good quality specifications, major

yields in terms of reliability, however, can be attributed to better code, for the simple reason that there

are many more defects residing in code that were inserted during the coding activity. We therefore

provide more depth on techniques that help to improve the quality of code, namely code reviews (i.e.,

code reviews and formal code inspections) and unit test (which might include static and dynamic code

analysis).

There are six possible paths of combining manual defect detection techniques in the delivery of a piece

of software from code complete until the start of integration test (Fig. 5). The paths indicate the per-

mutations of doing code reviews alone, performing code inspections and applying unit test. Each path

indicated by the arrows shows which activities are performed on a piece of code. An arrow crossing a

box means that the activity is not applied. Defect detection effectiveness of a code inspection is much

higher than that of a code review [1]. Unit test finds different types of defects than reviews. However

cost also varies depending on which technique is used, which explains why these different permuta-

tions are used. In our experience code reviews is the cheapest detection technique (with ca. 1-2

PH/defect) , while manual unit test is the most expensive (with ca. 1-5 PH/defect, depending on auto-

mation degree). Code inspections lie somewhere in between. Although the best approach from a mere

defect detection perspective is to apply inspections and unit test, cost considerations and the objective

to reduce elapsed time and thus improve throughput suggest carefully evaluating which path to follow

in order to most efficiently and effectively detect and remove defects.

E
n

ti
re

 s
et

 o
f

m
o

d
u

le
s Code

Reviews

Formal
Code

Inspection

U
n

it
te

st

in
te

g
ra

ti
o

n
 t

es
t

E
n

ti
re

 s
et

 o
f

m
o

d
u

le
s Code

Reviews

Formal
Code

Inspection

U
n

it
te

st

in
te

g
ra

ti
o

n
 t

es
t

Fig. 5: Six possible paths for modules between end of coding and start of integration test

Unit tests, however, combined with C0 coverage targets, have the highest effectiveness for regression

testing of existing functionality. Inspections, on the other hand, help in detecting distinct defect classes

that can only be found under real load (or even stress) in the field.

17

Defects are not distributed homogeneously through new or changed code [1,19]. An analysis of many

projects revealed the applicability of the Pareto rule: 20-30% of the modules are responsible for 70-

80% of the defects of the whole project [1,16,20]. These critical components need to be identified as

early as possible, i.e., in the case of legacy systems at start of detailed design, and for new software

during coding. By concentrating on these components the effectiveness of code inspections and unit

testing is increased and fewer defects have to be found during test phases. By concentrating on defect-

prone modules both effectiveness and efficiency are improved. Our main approach to identify defect-

prone software-modules is a criticality prediction taking into account several criteria. One criterion is

the analysis of module complexity based on complexity measurements. Other criteria concern the

number of new or changed code in a module, and the number of field defects a module had in the pre-

ceding project. Code inspections are first applied to heavily changed modules, in order to optimize

payback of the additional effort that has to be spent compared to the lower effort for code reading.

Formal code reviews are recommended even for very small changes with a checking time shorter than

two hours in order to profit from a good efficiency of code reading. The effort for know-how transfer

to another designer can be saved.

It is of great benefit for improved quality management to be able to predict early on in the develop-

ment process those components of a software system that are likely to have a high defect rate or those

requiring additional development effort. Criticality prediction is based on selecting a distinct small

share of modules that incorporate sets of properties that would typically cause defects to be introduced

during design more often than in modules that do not possess such attributes. Criticality prediction is

thus a technique for risk analysis during the design process.

Criticality prediction addresses typical questions often asked in software engineering projects:

 How can I early identify the relatively small number of critical components that make significant

contribution to defects identified later in the life-cycle?

 Which modules should be redesigned because their maintainability is bad and their overall criti-

cality to the project’s success is high?

 Are there structural properties that can be measured early in the code to predict quality attrib-

utes?

 If so, what is the benefit of introducing a measurement program that investigates structural prop-

erties of software?

 Can I use the often heuristic design and test know-how on trouble identification and risk assess-

ment to build up a knowledge base to identify critical components early in the development pro-

cess?

Criticality prediction is a multifaceted approach taking into account several criteria [21]. Complexity

is a key influence on quality and productivity. Having uncontrolled accidental complexity in the prod-

uct will definitely decrease productivity (e.g., gold plating, additional rework, more test effort) and

quality (more defects). A key to controlling accidental complexity from creeping into the project is the

18

measurement and analysis of complexity throughout in the life-cycle. Volume, structure, order or the

connections of different objects contribute to complexity. However, do they all account for it equally?

The clear answer is no, because different people with different skills assign complexity subjectively,

according to their experience in the area. Certainly criticality must be predicted early in the life-cycle

to effectively serve as a managerial instrument for quality improvement, quality control effort estima-

tion and resource planning as soon as possible in a project. Tracing comparable complexity metrics for

different products throughout the life-cycle is advisable to find out when essential complexity is over-

ruled by accidental complexity. Care must be used that the complexity metrics are comparable, that is

they should measure the same factors of complexity.

Having identified such overly critical modules, risk management must be applied. The most critical

and most complex, for instance, the top 5% of the analyzed modules are candidates for a redesign. For

cost reasons mitigation is not only achieved with redesign. The top 20% should have a code inspection

instead of the usual code reading, and the top 80% should be at least entirely (C0 coverage of 100%)

unit tested. By concentrating on these components the effectiveness of code inspections and unit test is

increased and fewer defects have to be found during test phases. To achieve feedback for improving

predictions the approach is integrated into the development process end-to-end (requirements, design,

code, system test, deployment).

It must be emphasized that using criticality prediction techniques does not mean attempting to detect

all defects. Instead, they belong to the set of managerial instruments that try to optimize resource allo-

cation by focusing them on areas with many defects that would affect the utility of the delivered prod-

uct. The trade-off of applying complexity-based predictive quality models is estimated based on

 limited resources are assigned to high-risk jobs or components

 impact analysis and risk assessment of changes is feasible based on affected or changed com-

plexity

 gray-box testing strategies are applied to identified high-risk components

 fewer customers reported failures

Our experiences show that, in accordance with other literature [22] corrections of defects in early

phases is more efficient, because the designer is still familiar with the problem and the correction de-

lay during testing is reduced.

The effect and business case for applying complexity-based criticality prediction to a new project can

be summarized based on results from our own experience database (taking a very conservative ratio of

only 40% defects in critical components):

 20% of all modules in the project were predicted as most critical (after coding);

 these modules contained over 40% of all defects (up to release time).

Knowing from these and many other projects that

 60% of all defects can theoretically be detected until the end of unit test and

19

 defect correction during unit test and code reading costs less than 10% compared to defect cor-

rection during system test,

it can be calculated that 24% of all defects can be detected early by investigating 20% of all modules

more intensively with 10% of effort compared to late defect correction during test, therefore yielding a

20% total cost reduction for defect correction. Additional costs for providing the statistical analysis are

in the range of two person days per project. Necessary tools are off the shelf and account for even less

per project.

V. RELIABILITY

Software reliability engineering is a statistical procedure associated with test and correction activities

during development. It is further used after delivery, based on field data, to validate prediction models.

Users of such prediction models and the resulting reliability values are development managers who

apply them to determine the best suitable defect detection techniques and to find the optimum delivery

time. Operations managers use the data for deciding when to include new functionality in a delivered

product that is already performing in the field. Maintenance managers use the reliability figures to plan

the allocation of resources they need to deliver corrections in due time according to contracted dead-

lines.

The current approach to software reliability modeling focuses on the testing and rework activities of

the development process. On the basis of data on the time intervals between occurrences of failures,

collected during testing, we attempt to make inferences about how additional testing and rework

would improve the reliability of the product and about how reliable the product would be once it is re-

leased to the user.

Software reliability engineering includes the following activities [1,8,23]:

 selecting a mixture of quality factors oriented towards maximizing customer satisfaction

 determining a reliability objective (i.e., exit criteria for subsequent test and release activities)

 predicting reliability based on models of the development process and its impact on defect intro-

duction, recognition and correction

 supporting test strategies based on realization (e.g., white box testing, control flow branch cover-

age) or usage (e.g., black box testing, operational profiles)

 providing insight to the development process and its influence on software reliability

 improving the software development process in order to obtain higher quality reliability

 defining and validating measurements and models for reliability prediction

The above list of activities is derived mainly from the customer’s point of view. When making the dis-

tinction between failures and defects, the customer is interested in the reduction of failures. Emphasis

on reducing failures means that development and testing is centered towards functions in normal and

extraordinary operational modes (e.g., usage coverage instead of branch coverage during system test-

20

ing, or operational profiles instead of functional profiles during reliability assessment). In this section

we will focus on the aspect of reliability modeling that is used for measuring and estimating (predict-

ing) the reliability of a software release during testing as well as in the field.

A reliability prediction model is primarily used to help in project management (e.g., to determine re-

lease dates, service effort or test effort) and in engineering support (e.g., to provide insight on stability

of the system under test, to predict residual defects, to relate defects to test cases and test effective-

ness). It is also used for critical management decisions, such as evaluating the trade-off of releasing

the product with a certain number of expected failures or to determine the necessary service resources

after release. The reliability model is based upon a standard model that is selected by the quality engi-

neer from the literature of such models and their applicability and scope [8]. Then it is adapted and tai-

lored to the actual situation of test and defect correction. Detected defects are reported into the model

together with underlying execution time. More sophisticated models also take into consideration the

criticality of software components, such as components with a long defect history or those that had

been changed several times during the current or previous releases.

Test strategies must closely reflect operational scenarios and usage in order to predict reliability after

release. The model then will forecast the defects or failures to expect during test or after release. Accu-

racy of such models should be in the range of 20-30 percent to ensure meaningful decisions. If they

are far off, the wrong model had been selected (e.g., not considering defects inserted during correction

cycles) or the test strategy is not reflecting operational usage.

Such models use an appropriate statistical model which requires accurate test or field failure data re-

lated to the occurrences in terms of execution time. Execution time in reliability engineering is the ac-

cumulated time a system is executed under real usage conditions. It is used for reliability measurement

and predictions to relate individual test time and defect occurrence towards the would-be performance

under real usage conditions.

Several models should be considered and assessed for their predictive accuracy, in order to select the

most accurate and reliable model for reliability prediction. It is of no use to switch models after the

facts to achieve best fit, because then you would have no clue about how accurate the model would be

in a predictive scenario. Unlike many research papers on that subject, our main interest is to select a

model that would provide in very different settings (i.e., project sizes) of the type of software we are

developing a good fit that can be used for project management. Reliability prediction thus should be

performed at intermediate points and at the end of system testing.

At intermediate points, reliability predictions will provide a measurement of the product’s current reli-

ability and its growth, and thus serve as an instrument for estimating the time still required for test.

They also help in assessing the trade-off between extensive testing and potential loss of market share

(or penalties in case of investment goods) because of late delivery. At the end of development which is

the decision review before releasing the product to the customer, reliability estimations facilitate an

evaluation of reliability against the committed targets. Especially in communication, banking and de-

21

fense businesses, such reliability targets are often contracted and therefore are a very concrete exit cri-

terion. It is common to have multiple failure rate objectives.

For instance, failure rate objectives will generally be lower (more stringent) for high failure severity

classes. The factors involved in setting failure rate objectives comprise the market and competitive sit-

uation, user satisfaction targets and risks related to defects of the system. Life-cycle costs related to

development, test and deployment in a competitive situation must be carefully evaluated, to avoid set-

ting reliability objectives too high.

Reliability models are worthless if they are not continuously validated against the actually observed

failure rates. We thus also include in our models which will be presented later in this section, a plot of

predicted against actually observed data.

The application of reliability models to reliability prediction is based on a generic algorithm for model

selection and tuning:

1. Establish goals according to the most critical process areas or products (e.g., by following the quali-

ty improvement paradigm or by applying a Pareto analysis).

2. Identify the appropriate data for analyzing defects and failures (i.e., with classifications according to

severity, time between failures, reasons for defects, test cases that helped in detection and so on).

3. Collect data relevant for models that help to gain insight into how to achieve the identified goals.

Data collection is cumbersome and exhaustive: Tools may change, processes change as well, devel-

opment staff are often unwilling to provide additional effort for data collection and – worst of all –

management often does not wish for changes that affect it personally.

4. Recover historical data that was available at given time stamps in the software development process

(for example, defect rates of testing phases); the latter of these will serve as starting points of the

predictive models.

5. Model the development process and select a defect introduction model, a testing model and a cor-

rection model that suit the observed processes best.

6. Select a reliability prediction model that suits the given defect introduction, testing and correction

models best.

7. Estimate the parameters for the reliability model using only data that were available at the original

time stamps.

8. Extrapolate the function at some point in time later than the point in time given for forecasting. If

historical data is available after the given time stamps it is possible to predict failures.

9. Compare the predicted defect or failure rates with the actual number of such incidents and compute

the forecast’s relative error.

This process can be repeated for all releases and analyzed to determine the “best” model.

The overall goal is, of course, not to accurately predict the failure rate but to be as close as possible to

a distinct margin that is allowed by customer contracts or available maintenance capacity.

22

VI. ECONOMIC CONSIDERATIONS

Quality improvement is driven by two overarching business objectives, both contributing to increased

returns on engineering investments.

 Improve the customer-perceived quality. This impacts the top line because sales are increased

with satisfied customers.

 Reduce the total cost of non-quality. This improves the bottom line, because reduced cost of

non-quality means less engineering cost with same output, therefore improved productivity.

Improving customer-perceived quality can be broken down to one major improvement target, to sys-

tematically reduce customer detected defects. Reducing field defects and improving customer-

perceived quality almost naturally improves the cost-benefit values along the product life-cycle. In-

vestments are made to improve quality which later improves customer satisfaction. Therefore the se-

cond objective of reducing the cost of non-quality comes into the picture: this is the cost of activities

related to detecting defects too late.

Return on investment (ROI) is a critical, but often misleading expression when it comes to develop-

ment cost. Too often heterogeneous cost elements with different meaning and unclear accounting rela-

tionships are combined into one figure that is then optimized. For instance, reducing the “cost of quali-

ty” that includes appraisal cost and prevention cost is misleading when compared with cost of noncon-

formance because certain appraisal costs (e.g., unit test) are components of regular development. Cost

of nonconformance (cost of non-quality) on the other hand is incomplete if we only consider internal

cost for defect detection, correction and redelivery because we must include opportunity cost due to

rework at the customer site, late deliveries or simply binding resources that otherwise might have been

used for a new project.

Not all ROI calculations need to be based immediately on monetary benefits from accounting. De-

pending on the business goals, they can as well be directly presented in terms of improved delivery ac-

curacy, reduced lead time or higher efficiency and productivity. The latter have a meaning for the

market or customer, and thus clearly serve as a ROI basis.

One of the typical improvement objectives (and thus measurements) related to process improvement is

reduced cost of non-quality. Reducing cost is for many companies a key business concern and they

look for ways how to effectively address sources of cost. Philip Crosby’s cost of quality model pro-

vides a useful tool for measuring the impacts of process improvement in this domain [10]. We have

extended his model to cover the quality-related cost in software and IT projects [1]. Our model seg-

ments cost of building a product and is applicable to all kinds of software and IT products, services

and so on. Fig. 6 shows the quality related cost and its elements following four categories.

23

Cost of non-quality

• Defect corrections
• Repeated reviews
• Repeated tests (incl.

equipment)
• Changes and rework

due to defects
• Repeated production

and delivery
• Versions, patches

and their
management

• Penalties for
insufficient quality

• Opportunity cost

Cost of performance
(non-cost of quality)

• Preparation
• Product and project

management
• Requirements

engineering
• Development,

creation of value
(specifications,
design, code,
integration,
production, etc.)

• Documentation
• Support activities

(e.g., configuration
management)

Cost of quality

Cost of prevention Cost of appraisal

Total project cost

Quality related cost

• Training
• Methods and

processes (e.g.,
introduction,
coaching,
execution,
improvement)

• Root cause
analysis

• Defect prevention

• Reviews and
inspections of
work products
(e.g., design,
documents, test
cases, etc.)

• Code analysis
and immediate
debugging

• Test: first run
• Audits

Cost of non-quality

• Defect corrections
• Repeated reviews
• Repeated tests (incl.

equipment)
• Changes and rework

due to defects
• Repeated production

and delivery
• Versions, patches

and their
management

• Penalties for
insufficient quality

• Opportunity cost

Cost of performance
(non-cost of quality)

• Preparation
• Product and project

management
• Requirements

engineering
• Development,

creation of value
(specifications,
design, code,
integration,
production, etc.)

• Documentation
• Support activities

(e.g., configuration
management)

Cost of quality

Cost of prevention Cost of appraisal

Total project cost

Quality related cost

• Training
• Methods and

processes (e.g.,
introduction,
coaching,
execution,
improvement)

• Root cause
analysis

• Defect prevention

• Reviews and
inspections of
work products
(e.g., design,
documents, test
cases, etc.)

• Code analysis
and immediate
debugging

• Test: first run
• Audits

Fig. 6: Quality related cost and its elements

 Cost of performance or non-cost of quality. These are any regular cost related to developing

and producing the software, such as requirements management, design, documentation or de-

ployment environments. It includes project management, configuration management, tools and

so on. It excludes only the following segments which have been defined to distinguish quality-

related activities.

 Cost of prevention. These are the cost to establish, perform and maintain processes to avoid or

reduce the number of defects during the project. It includes dedicated techniques and methods

for defect prevention and the related measurement, change management, training and tools.

 Cost of appraisal. These are the cost related to detecting and removing defects close to the ac-

tivity where they had been introduced. This cost typically includes activities such as reviews,

unit test, inspections, but also training in these techniques.

 Cost of nonconformance or cost of non-quality. These are the cost attributable to not having

prevented or removed defects in due time. They can be distinguished towards cost of internal de-

fects (found in testing) and cost of external defects (found after release of the product). Specifi-

cally the latter have huge overheads due to providing corrections or even paying penalties. Re-

gression testing, building and deploying patches and corrections, staffing the help desk (for the

share of corrective maintenance and service) and re-developing a product or release that misses

customer needs are included to cost of non-quality. For conservative reasons (i.e., to not overes-

timate ROI and savings) they do not include opportunistic cost, such as bad reputation or loosing

a contract.

Let us look to a concrete example with empirical evidence. For early defect detection, we will try to

provide detailed insight in an ROI calculation based on empirical data from many different industry

projects which was collected during the late nineties in numerous studies from a variety of projects of

different size and scope [1,24]. Fig. 7 provides data that results from average values that have been

24

gathered in Alcatel’s global project history database over nearly ten years.

T
im

e
to

 d
et

ec
t a

nd
 c

or
re

ct
 a

 d
ef

ec
t

Total person-
hours per defect

(detection + removal
+ re-delivery)

2
3-5

10-15

30

Detection
during reviews, code
analysis and unit test

Validation
(feature test,
system test)

Post
delivery

100+

time

delivery

T
im

e
to

 d
et

ec
t a

nd
 c

or
re

ct
 a

 d
ef

ec
t

Total person-
hours per defect

(detection + removal
+ re-delivery)

2
3-5

10-15

30

Detection
during reviews, code
analysis and unit test

Validation
(feature test,
system test)

Post
delivery

100+

time

delivery

Fig. 7: The defect-related effort to detect, remove and redeliver software depending on the activity

where the defects are found

To show the practical impact of early defect removal we will briefly set up the business case. We will

compare the effect of increased effort for combined code reading and code inspection activities as a

key result of our improvement program. Table 2 shows the summary of raw data that contributes to

this business case. The values have been extracted from the global history database for three consecu-

tive years, during which the formalized and systematic code reviews and inspections had been intro-

duced. The baseline column provides the data before starting with systematic code reviews. Year one

is the transition time and year two shows the stabilized results. Given an average-sized development

project with 75 KStmt and only focusing on the new and changed software without considering any

effects of defect-preventive activities over time, the following calculation can be derived. The effort

spent for code reading and inspection activities increases by 1470 PH. Assuming a constant average

combined appraisal cost and cost of nonperformance (i.e., detection and correction effort) after coding

of 15 PH/defect (the value at the time of this analysis in the respective product-line), the total effect is

9030 PH less spent in year 2. This results in a ROI value of 6.1 (i.e., each additional hour spent on

code reading and inspections yields 6.1 saved hours of appraisal and nonperformance activities after-

wards).

Additional costs for providing the static code analysis and the related statistical analysis are in the

range of few person hours per project. The tools used for this exercise are off-the-shelf and readily

available (e.g., static code analysis, spreadsheet programs).

The business impact of early defect removal and thus less rework is dramatic. Taking above observa-

tions, we can generalize towards a simple rule of thumb. Moving 10% of defects from test activities

(with 10-15 PH/defect) to reviews and phase-contained defect removal activities (with 2-3 PH/defect)

brings a yield of 3% of total engineering cost reduction.

The calculation is as follows. We assume that an engineer is working for 90% on projects. Of this pro-

25

ject work, 40% is for testing (which includes all effort related to test activities) and another 40% is for

constructive activities (including requirements analysis, specification, design, coding, together with

direct phase-contained defect removal). The rest is assumed as overheads related to project manage-

ment, configuration management, training and so on. So the totality of engineering effort on design

and test is 32%, respectively. Obviously the design and test could be done by one or different persons

or teams without changing the calculation.

Table 2: The business case for systematic code reviews and inspections

Empirical data, mapped to sample project baseline year 1 year 2
Reading speed [Stmt/PH] 183 57 44
Effort in PH per KStmt 15 24 36
Effort in PH per Defect in code reviews 7.5 3 3
Defects per KStmt 2 8 12
Effectiveness [% of all] 2 18 29

Sample project: 70 KStmts. 2100 defects estimated
based on 30 defects per KStmt

Effort for code reading or inspections [PH] 1050 2520
Defects found in code reading/inspections 140 840
Residual defects after code reading/inspections 1960 1260
Correction effort after code reading/inspections [PH]
(based on 15 PH/F average correction effort)

29400

18900

Total correction effort [PH] 30450 21420

ROI = saved total effort / additional detection effort 6.1

We assume the design engineer delivers a net amount of 15 KStmt verified code per person year. This

amount of code consists only of manually written code, independently whether it is done by means of

a programming language or of design languages that would later be translated automatically into code.

It does not include reused code or automatically generated code.

Let us assume the person year as 1500 PH. This code contains 20 defects per KStmt of which 50% are

found by the designer and 50% by test. So the designer delivers 150 defects per year to test, which

cost 10 person hours per defect to remove and re-deliver. This results in an effort of 1.500 PH for test-

ing, which is roughly one person year. Detecting 10% of these defects already during design would

number to 150 PH of saved test effort assuming that test cases would be decreased, which is normally

the case once the input stability is improving. These 10% of defects would cost 2 person hours each

for additional verification effort, totaling to 30 PH. The savings would be 120 PH which we can com-

pare to our engineering cost for the 15 delivered KStmt.

Original cost of the 15 delivered KStmt of code is one person year of design and one person year of

test. This accumulates to 3000 PH. With the change, the total cost would be 1530 PH (design plus ad-

ditional verification) plus 1350 PH (new test effort), which equals 2880 person hours. The 10% move

of defects from test to verification total a saving of 120 PH which is 4% of the respective workload be-

26

ing saved. We have reduced net engineering cost by 4% by detecting an additional 10% of defects be-

fore test!

Taking into consideration the gross cost of engineering, which allows only 90% of engineering time

spent on project work and only 80% of that time spent for design and test within the project-related ef-

fort means that 72% of engineering time is directly attributable to code and test. 72% multiplied with

the 4% savings above results in a gross saving of 2.9%.

This means that from a total engineering expense perspective, moving 10% of defects from test to de-

sign yields a benefit of 3% to overall engineering cost. Early defect removal is a key element of any

efficiency improvement – much more reliable than offshoring.

Note that we took a conservative approach to this savings calculation, by for instance leaving out any

cost of defects found after delivery to the customer or opportunistic effects from a not so satisfied cus-

tomer or from additional service cost. You should certainly make a similar calculation in your own

environment to judge the business impact of your change and improvement initiatives.

Motorola has done similar studies during the past years and correlated the quality related cost (for def-

initions see Fig. 6) with the achieved CMMI maturity level [25]. Fig. 8 shows the results starting with

maturity level 1 and highest total cost of quality on the left side. The impacts and culture changes ob-

tained with higher maturity are provided by moving to the right side. It ends with maturity level 5 and

lowest overall cost of software quality. Again we see what we stressed already in the introduction,

namely that preventive activities yield benefits only if quality control and quality assurance activities

are well under control. Quality management has to be engrained in the company’s culture which takes

some time. Moving from one to the next maturity level typically takes one to two years depending on

the size of the company and its organizational complexities.

0

10

20

30

40

50

60

70

ML1 ML2 ML3 ML4 ML5

Prevention

Appraisal

Internal failure

External failure

Total cost of
softw are quality

Fig. 8: Improving process maturity at Motorola reduced the total cost of quality

There are many similar observations in software engineering that the author has observed throughout

many years of working with very different engineering teams, working on all types of software

[1,20,24,26,27,28]. Generally it pays off to remove defects close to the phase where they are inserted.

Or more generally to remove accidental activities and outcome, while controlling essential activities.

27

We assert this observation and the impacts of early defect removal to a law which states in simple

words: Productivity is improved by reducing accidents and controlling essence [1]. This law can

be abbreviated with the first letters of the four words to a simple, yet powerful word: RACE (Reduce

Accidents, Control Essence). Those who succeed with RACE will have not only cost savings but also

be in time and thus win the race on market share. Early defect removal, that is reduced accidents, and

focus on what matters, that is control essence means productivity and time to profit!

VII. SOFTWARE QUALITY RULES OF THUMB

This chapter will summarize the quantifiable experiences and wisdom that the author collected in his

over 20 years of practical software engineering. The list is far from complete and certainly is not as

scientific as one would like – but it is a start. The data stems from our own history databases [1].

Clearly, this is not a substitute for your own quality database. You need to build over time your own

experience database with baselines for estimation, quality planning and the like. However, you might

not yet have this data available, or it is not yet scaleable for new products, methodologies or projects.

Knowing that it is often difficult to just use plain numbers to characterize a situation, we are also

aware that beginners and practitioners need some numbers to build upon – even if their applicability is

somewhat limited. We will therefore provide in this chapter concrete and fact-based guidance with

numbers from our own experiences so you can use it as a baselines in your projects.

The number of defects at code completion (i.e., after coding has been finished for a specific compo-

nent and has passed compilation) can be estimated in different ways. If size in KStmt or KLOC is

known, this can be translated into residual defects. We found some 10-50 defects per KStmt depend-

ing on the maturity level of the respective organization [1]. IFPUG uses the predictor of 1.2 defects

per function point which translates for C-language into 20 defects per KStmt [29]. Alternatively it is

recommended for bigger projects to calculate defects as FP 1.2 . This is based only on new or changed

code, not including any code that is reused or automatically generated. For such code, the initial for-

mula has to be extended with percentage of defects found by the already completed verification (or

validation) steps. An alternative formula for new projects takes estimated function points of a project

to the power of 1.25 [1].

Verification pays off. Peer reviews and inspections are the least expensive of all manual defect detec-

tion techniques. You need some 1-3 person hours per defect for inspections and peer reviews [1]. Be-

fore starting peer reviews or inspections, all tool-supported techniques should be fully exploited, such

as static and dynamic checking of source code. Fully instrumented unit test should preferably be done

before peer reviews. Unit test, static code analysis and peer reviews are orthogonal techniques that de-

tect different defect classes. Often cost per defect in unit test is the highest amongst the three tech-

niques due to the manual handling of test stubs, test environments, test cases, and so on.

Defect phase containment has clear business impact. Detecting 10% more defects in design or code

28

reviews and therefore reducing test effort and long rework cycles yields a savings potential of 3% of

engineering cost [1].

Cost of non-quality (i.e., defect detection and correction after the activity where the defect was intro-

duced) is around 30-50% of total engineering (project) effort [1]. A significant percentage of the effort

on current software projects is typically spent on avoidable rework [20]. It is by far the biggest chunk

in any project that can be reduced to directly and immediately save cost! Especially for global soft-

ware engineering projects, this cost rather increases due to interface overheads where code or design

would be shipped back and forth until defects are retrieved and removed. The amount of effort spent

on avoidable rework decreases as process maturity increases [1,20].

Typically testing consumes more than 40% of the resources and – depending on the project life-cycle

(sequential or incremental) – a lead-time of 15-50% compared to total project duration [1]. The mini-

mum 15% lead-time is achieved when test strongly overlaps with development, such as in incremental

development with a stable build which is continuously regression tested. In such case, there is only the

system test at the end contributing to lead-time on the critical project path. On the other hand 50%

(and more) stem from testing practiced in a classic waterfall approach with lots of overheads due to

components that won’t integrate.

Cost of defects after delivery. Finding and fixing a severe software problem after delivery is often

100 times more expensive than finding and fixing it during the requirements and design phase [1,20].

This relates to the cost of rework and correction which increases fast once the software system is built

and delivered.

Each verification or validation step as a rule of thumb will detect and remove around 30% of the

then residual defects [1]. This means that 30% of defects remaining at a certain point of time can be

found with a distinct defect detection technique. This is a cascading approach, where each cascade

(e.g., static checking, peer review, unit test, integration test, system test, beta test) removes each 30%

of defects. It is possible to exceed this number slightly towards 40-50% but at steeply increasing cost

per defect. Reviews of work products can catch more than half of a product’s defects regardless of the

domain, level of maturity of the organization, or life-cycle phase during which they were applied [20].

It is however important to realize that each such activity has an efficiency optimum (see Table 3) [1].

Going beyond that optimum often means an increasing cost per defect removed. It could still be valid

doing so, especially for critical software, but a careful planning is required to optimize total cost of

non-quality.

29

Table 3: Defect detection rate per activity compared to the total number of defects

Project activities Maximum Typical defect
detection effec-

tiveness

Insufficient

Requirements reviews 10-15% 5-10% 0%
Design reviews 10% 5-10% 0%
Code: static code analysis 20% 10-20% <10%
Code: peer reviews and inspections 40% 20-30% <10%
Code: code analysis and unit test 30% 10-30% <10%
Integration test 20% 5-20% >20%
Qualification / release test 5% 1-5% >5%

Total percentage removed 100% 95-98% <90%

Residual defects are estimated from estimated total defects and the different detected defects. This al-

lows the planning of verification and validation and of allocating necessary time and budget according

to quality needs. If 30% of the defects are removed per detection activity then 70% will remain. Re-

sidual defects at the end of the project thus equal the number of defects at code completion times 70%

to the power of independent detection activities (e.g., code inspection, module test, integration test,

system test, and so on).

Release quality of software shows that typically 10% of the initial defects at code completion will

reach the customer [1]. Depending on the maturity of the software organization, the following number

of defects at release time can be observed [1]:

 CMMI maturity level 1: 5-60 defects/KStmt

 Maturity level 2: 3-12 defects/KStmt

 Maturity level 3: 2-7 defects/KStmt

 Maturity level 4: 1-5 defects/KStmt

 Maturity level 5: 0.05-1 defects/KStmt.

Quality of external components from suppliers on low process maturity levels is typically poor.

Suppliers with high maturity (i.e., on or above CMMI maturity level 3) will have acceptable defect

rates, but only if they own the entire product or component and manage their own suppliers. Virtual

(globally distributed) development demands more quality control and thus cost of quality to achieve

the same release quality.

Improving release quality needs time: 5% more defects detected before release time translates into

10-15% more duration of the project [1].

New defects are inserted with changes and corrections, specifically those late in a project and done

under pressure. Corrections create some 5-30% new defects depending on time pressure and underly-

ing tool support [1]. Especially late defect removal while being on the project’s critical path to release

causes many new defects with any change or correction because quality assurance activities are re-

duced and engineers are stressed. This must be considered when planning testing, validation or

30

maintenance activities.

The Pareto principle also holds for software engineering [1]:

 10% of all code account for 90% of outage time

 As a rule of thumb, 20% of all components (subsystems, modules, classes) consume 60-80% of

all resources.

 60% of a system’s defects come from 20% of its components (modules, classes, units). Howev-

er, the distribution varies based on environment characteristics such as processes used and quali-

ty goals.

 Post-release, about 40% of modules may be defect-free [20].

 20% of all defects need 60-80% of correction effort. Most of the avoidable rework comes from a

small number of software defects, where avoidable rework is defined as work done to mitigate

the effects of errors or to improve system performance [20].

 20% of all enhancements require 60-80% of all maintenance effort.

This might appear a bit theoretical because obviously Pareto distributions rule our world – not only

that of software engineering. It is always the few relevant members in any set which govern the set’s

behaviors. However, there are concrete, practically useful benefits you can utilize to save on effort.

For instance, critical components can be identified in the design by static code analysis and verifica-

tion activities then can be focused on those critical components.

VIII. CONCLUSIONS

The article has introduced to software quality management. It detailed basic ingredients of quality

management, such as quality policies, quality control and quality assurance. It introduced to major

standards and detailed why good processes and engrained discipline in engineering and management

processes will drive better quality. Focus was given to the concept of defects and how they can be pre-

dicted, detected, removed and prevented. Quality is free, but you need to invest in some place in order

to earn more money in the bottom line. This relationship of investment in better people, processes and

discipline was outlined by providing some sample business cases related to introducing quality man-

agement.

Let us conclude with a set of practical advice that help in building a quality culture:

 Specify early in the product life-cycle and certainly before start of a project what quality level

needs to be achieved. State concrete and measurable quality requirements. Ensure that the quali-

ty objectives are committed for the product and project. Agree within the project plan the respec-

tive techniques and processes to achieve these committed quality objectives.

 Establish the notion of “good enough”. Avoid demanding too much quality. Quality objectives

have to balance market and internal needs with the cost and effort to achieve them. It is of no

benefit to shoot for perfectionism if the market is not willing to pay for it. It is however equally

31

stupid to deliver insufficient quality and thus loose reputation. Note that bad quality will spread

and multiply in its effect much faster and wider than delivering according to specification or

above.

 Clearly distinguish quality control activities from quality assurance activities. They are both nec-

essary but done by different parties. Quality control is the responsibility of each single employee

delivering or handling (work) products. Quality assurance comes on top and is based on samples

to check whether processes and work products conform to requirements.

 Implement the combination of “built-in” and “bolt-on” attributes of quality. The approach of

combination of prevention and early detection of defects will cut the risk of defects found by the

customer.

 Leverage management and staff with previous quality assurance experience to accelerate change

management.

 Measure and monitor quality consistently from requirement definition to deployment. This will

help in keeping the efforts focused across the full life-cycle of the product development. Use

measurements for effectiveness (i.e., how many defects are found or what percentage of defects

are found or what type of defects are found with a distinct defect removal activity) and efficien-

cy (i.e., how much effort per defect removal or how much effort per test case, cost of non-

quality) to show the value of early defect removal. Convince your senior management of the

business case and they will be your best friends in pushing enough resources into development to

contain defect removal to the phase where defects are introduced. Only old-fashioned managers

like test (because they think it is the way to see the software working), modern managers just

hate test due to its high cost, insufficient controllability and poor effectiveness.

 Know about defects, where they origin, how to best detect them and how to remove them most

effectively and efficiently. Do not be satisfied with removing defects. Testing is a big waste of

effort and should be reduced as much as possible. With each defect found think about how to

change the process to avoid the defect from reoccurring. Defects should be removed in the phase

where they are created. Being successful with defect phase containment needs few practical pre-

requisites.

 Ensure the right level of discipline. This includes planning, preparation, training, checklists,

monitoring. Too much formalism can cause inefficiencies, not enough formalism will reduce ef-

fectiveness. Reporting of defects and effort per defect is key to optimize the process and forecast

residual defects. Without reporting, reviews are not worth the effort.

 Apply different types of early defect correction such as reviews, inspections, tool-based software

analysis and unit test. Requirements inspections are mandatory for all projects and should be

done by designers, testers and product managers. Hardware is analyzed by tools and inspected

with specific guidelines. GUI design (e.g., Web pages) are reviewed for usability and so on.

Software design and code are statically analyzed plus inspected. Inspections should focus on

32

critical areas with more defects than average. Critical areas can be identified based on complexi-

ty, change history and so on.

 Measure and improve engineering efficiency by continuously measuring software quality and its

different cost parameters. Verification techniques should find 50-60% of the residual defects.

They are typically cascaded to detect different defect types. Detecting 10% more defects in de-

sign or code reviews and therefore reducing test effort and long rework cycles yields a savings

potential of 3% of engineering cost.

 Follow a structured and systematic methodology as demanded by CMMI, Six Sigma, ISO 9001

etc. as the basis for process improvement. Once the processes are in place, measure their perfor-

mance, reduce variation and define strategy for continuous improvement.

Quality is about people and processes. Never forget about the people factor. It is engineers and man-

agement that drive culture in a software company. Include training and development on quality control

and quality assurance procedures for every employee as a part of their role and incentives. Assure that

especially management would walk the talk. Or in the words of M. Gandhi: “You must be the change

that you want to see in the world”.

Acknowledgements

Some parts of sections III, IV, V, VI and VII appeared first in Ebert, C., and R.Dumke: Software

Measurement. Copyrights: Springer, Heidelberg, New York, 2007. Used with permission. We recom-

mend reading that book as an extension of the quantitative concepts mentioned in this article.

Further Reading

There are few basic references that we recommend to get a good understanding of quality manage-

ment. A very basic reading is the classic text of Crosby [10]. From a formal perspective, obviously the

ISO 9001 standard [3] is an absolute prerequisite to understand quality management. Software quality

improvement is often build upon the CMMI as a framework for process improvement. We recommend

reading the underlying reference of Chrissis et al [5]. Those who want to embark further in reliability

engineering should read the books of Musa and Lyu [7,8]. Quantitative techniques and measurement

concepts and experiences are detailed in the authors book on software measurement [1]. A sound ref-

erence for lots of quantitative data is the book of Jones [16]. A look into how quality concepts relate to

liability and legal aspects is provided in a Vector Consulting Services white paper [30].

Literature

[1] Ebert, C. and R. Dumke: Software Measurement. Springer, Heidelberg, New York, 2007.
[2] Buzzel, R. D. and B. T. Gale: The PIMS Principles – Linking Strategy to Performance. The Free

Press, New York, 1987.
[3] ISO 9001:2000. Quality management systems – Requirements. ISO, http://www.iso.org (2000)
[4] CMMI® for Development, Version 1.2. CMU/SEI-2006-TR-008. August 2006

33

[5] Chrissis, M.B., M.Konrad and S.Shrum: CMMI. Guidelines for Process Integration and Product
Improvement, ed. 2. Addison-Wesley, Reading, USA (2006)

[6] Khoshgoftaar, T.M. et al: Early Quality Prediction: A Case Study in Telecommunications. IEEE
Software, 13: 65-71 (1996)

[7] Musa, J. D., Iannino, A., Okumoto, K.: Software Reliability – Measurement, Prediction, Applica-
tion. McGraw-Hill, New York, (1987)

[8] Lyu, M.R.: Handbook of Software Reliability Engineering. McGraw-Hill, New York, (1995)
[9] McConnell, S.: Professional Software Development. Addison-Wesley, Reading, USA, (2003)
[10] Crosby, Philip: Quality is Free. New American Library, New York, 1979.
[11] Humphrey, W. S.: Managing the Software Process. Addison-Wesley, Reading, USA (1989)
[12] ISO/IEC 15504-2:2003. Information technology – Process assessment – Part 2: Performing an as-

sessment. ISO, http://www.iso.org (2003)
[32] Performance Results of CMMI®-Based Process Improvement. CMU/SEI-2006-TR-004. August

2006.
[14] Cai, K.: On Estimating the Number of Defects Remaining in Software. The Journal of Systems

and Software. Vol. 40, No. 2, pp. 93-114 (1998)
[15] Mills, H. D.: On the Statistical Validation of Computer Programs. Technical Report FSC-72-

6015, Gaithersburg, MD : IBM Federal Systems Division (1972)
[16] Jones, C., Software Quality, International Thomson Computer Press, Boston, MA, (1997)
[17] Humphrey, W. S.: Introduction to the Personal Software Process. Addison-Wesley, Reading, USA

(1997)
[18] Jones, C., Applied Software Measurement, McGraw-Hill, New York, (1996)
[19] Wayne, M. Z., Zage, D. M.: Evaluating Design Metrics on Large-Scale Software. IEEE Software,

Vol. 10, No. 7, pp. 75–81, Jul. 1993 (1993)
[20] Shull, F. et al: What we have learned about fighting defects. Proceedings of the 8th International

Symposium on Software Metrics. IEEE, Los Alamitos, USA, pp. 249-258 (2002)
[21] Ebert, C.: Tracing Complexity through the Software Process. Proc. Int. Conf. on Engineering of

Complex Computer Systems ICECCS’95. IEEE Computer Soc. Press., pp. 23-30, Los Alamitos,
CA, USA, 1995.

[22] Evanco, W. M. and W. W, Agresti: A composite complexity approach for software defect model-
ing. Software Quality Journal, 3: pp. 27-44 (1994)

[23] Musa, J. D., Iannino, A.: Estimating the Total Number of Software Failures Using an Exponential
Model. Software Engineering Notes, Vol. 16, No. 3, pp. 1-10, July 1991 (1991)

[24] Ebert, C., T.Liedtke, E.Baisch: Improving Reliability of Large Software Systems. In: A.L.Goel,
ed.: Annals of Software Engineering. 8: pp. 3-51 (1999)

[25] Eickelmann, N.: Measuring Maturity Goes beyond Process. IEEE Software, Vol. 21, No. 4, pg.
12-13 (2004)

[26] Ebert, C.: Improving Validation Activities in a Global Software Development. Proc. Int. Conf. on
Software Engineering 2001. IEEE Comp. Soc. Press, Los Alamitos, USA, 2001

[27] Ebert, C.: Global Software Engineering. IEEE ReadyNote (e-Book), IEEE Computer Society, Los
Alamitos, USA, 2006.

 http://www.computer.org/portal/cms_docs_cs/ieeecs/jsp/ReadyNotes/displayRNCatalog.jsp . Cit-
ed 25. July 2007

[28] Ebert, C.: Understanding the Product Life-cycle: Four Key Requirements Engineering Tech-
niques. IEEE Software, Vol. 23, No. 3, pp. 19-25, May 2006

[29] Longstreet, D.: Test Cases & Defects. Published at http://www.ifpug.com/Articles/defects.htm.
Cited 25. July 2007.

[30] Amsler, K. et al: Safety-critical engineering processes. Vector Consulting, White Paper, 2004.
 http://www.vector-consulting.de/portal/datei_mediendatenbank.php?system_id=106900 Cited 25.

July 2007.

