Open Standards as a Leverage for the Development of Automated Driving

ASAM International Conference, December 11th 2019
Motivation

Why do we need closed-loop simulation and (OpenX) standards?

- Still valid, but: *yesterday’s news:*
 - **Increased front-loading** to avoid costly changes in late development phases
 - **Deterministic controllability** of vehicle and environment test conditions
 - Safe testing in **critical driving maneuvers**, including near crash situations or vulnerable road users

- Simulation is an **integral part of the development of automated driving:**
 - New **software development processes**
 - Interdisciplinarity leads to diverse tooling and **increased importance of standards**
 - Increased quantity and quality of **scenarios**
Standards for Key Components of Virtual Test Driving

Static Environment
- road profile, network
- friction, roughness, ...
- lane markings, guard rails, traffic signs, signals, ...
- terrain, buildings, vegetation
- lighting, fog, precipitation

Dynamic Environment
- vehicles, bicycles, pedestrians, animals
- deterministic tasks or stochastic traffic
- interaction with other road users and reaction on events

Vehicle Model
- chassis, steering, tires, ...
- engine, electric motor, ...
- drivetrain components
- electrical system, ...
- vehicle state sensors for yaw rate, acceleration, ...

Sensor Models
- camera, radar, lidar, ultrasonic
- object lists, target lists or physics-based sensor data
- realistic sensor movements due to vehicle dynamics

Toolchain Integration
- integration of system under test into vehicle model
- integration of simulation application into various execution environments from MiL to HiL
- test automation
- reporting
- management of result data and parameters
Standards for Key Components of Virtual Test Driving

Static Environment
- road profile, network
- friction, roughness, ...
- lane markings, guard rails, traffic signs, signals, ...
- terrain, buildings, vegetation
- lighting, fog, precipitation

Dynamic Environment
- vehicles, bicycles, pedestrians, animals
- deterministic tasks or stochastic traffic
- interaction with other road users and reaction on events

Vehicle Model
- chassis, steering, tires, ...
- engine, electric motor, ...
- drivetrain components
- electrical system, ...
- vehicle state sensors for yaw rate, acceleration, ...

Sensor Models
- camera, radar, lidar, ultrasonic
- object lists, target lists or physics-based sensor data
- realistic sensor movements due to vehicle dynamics

Toolchain Integration
- integration of system under test into vehicle model
- integration of simulation application into various execution environments from MiL to HiL
- test automation
- reporting
- management of result data and parameters
Standards for Key Components of Virtual Test Driving

Toolchain Integration
- integration of system under test into vehicle
- management or result data and parameters

Static Environment
- road profile, network
- friction, roughness, ...
- lane markings, guard rails, traffic signs, signals, ...
- terrain, buildings, vegetation
- lighting, fog, precipitation

Dynamic Environment
- vehicles, bicycles, pedestrians, animals
- deterministic tasks or stochastic traffic
- interaction with other road users and reaction on events

Vehicle Model
- chassis, steering, tires, ...
- engine, electric motor, ...
- drivetrain components
- electrical system, ...
- vehicle state sensors for yaw rate, acceleration, ...

Sensor Models
- camera, radar, lidar, ultrasonic
- object lists, target lists or physics-based sensor data
- realistic sensor movements due to vehicle dynamics

© 2019. Vector Informatik GmbH. All rights reserved. Any distribution or copying is subject to prior written approval by Vector. V1.0 | 2019-11-26
Standards for Key Components of Virtual Test Driving

Input

System under Test

optional: custom sensor model

Simulation & Workflows

Output

ASAM
OpenDRIVE

ASAM
OpenSCENARIO

ASAM
XiL API

DYNA4

ASAM
OSI

ASAM
MDF
Use-Case: Explorative Testing of a Highway Pilot

Use-Case Description

- Test system performance of **highway pilot** function
 - uses vehicular environment perception sensors
 - enhanced with C2X functionality

- Testing scenario with Vehicle under Test:
 - on a highway
 - approaching a traffic jam caused by a broken down vehicle
 - in varying surrounding traffic

source: Daimler.com
Use-Case: Exploratory Testing of a Highway Pilot

OpenDRIVE Road Model

Input

ASAM OpenDRIVE

Simulation & Workflows

System under Test

optional: custom sensor model

Output

ASAM OSI

ASAM MDF

ASAM OpenSCENARIO

DYNA4

ASAM XiL API
Use-Case: Explorative Testing of a Highway Pilot

OpenDRIVE in DYNA4

- ASAM **OpenDRIVE** standard for parametrical road model and static environment
 - Complex road networks with junctions, crossfall, superelevation etc.
 - Road marks and barriers, traffic signs and traffic lights, gantries, etc.
 - Integration of high resolution road surface profiles in OpenCRG format
- Direct **support without conversion** in DYNA4
 - Online generation of road and terrain for simulation and 3D visualization
 - Simulink block for online access to “ground-truth road data”

German highway A9 measured and exported to OpenDRIVE by 3D Mapping Solutions
Use-Case: Exploratory Testing of a Highway Pilot

Enhancement of OpenDRIVE roads with custom-made environments

Windridge City by unity

Wangen by TRIANGraphics

Intelligent Terrain Solutions
What is SUMO?
- Free and open traffic simulator
- Part of Eclipse openMobility group
- Simulation of Urban Mobility
- Main contributor: German Aerospace Center

OpenDRIVE support in SUMO
- Proprietary XML network format for SUMO
- Conversion from OpenDRIVE via SUMO’s integrated NETCONVERT tool
- Reduction of manual effort through customizable mapping of OpenDRIVE
Use-Case: Explorative Testing of a Highway Pilot

OpenSCENARIO

DYNA4

Input

Simulation & Workflows

System under Test

optional: custom sensor model

Output

ASAM
OpenDRIVE

ASAM
OpenSCENARIO

ASAM
XIL API

ASAM
OSI

ASAM
MDF
Use-Case: Explorative Testing of a Highway Pilot

Traffic and Dynamic Environment

- Current solution: proprietary scenario description
 - Assign paths or routes to road users (vehicles, cyclists, motorbikes, pedestrians, animals)
 - Trigger longitudinal or lateral driving tasks such as lane changes for deterministic behavior
 - Enhance deterministic traffic with stochastic road users

- Upcoming: OpenSCENARIO
 - Active contribution to OpenSCENARIO 2.0

- Expectations / hopes:
 > Standardized, yet extensible scenario description language
 > Unified mechanism for 0, 1 or n Vehicles under Test + deterministic traffic + stochastic traffic
Use-Case: Explorative Testing of a Highway Pilot

Driving single VuT on highway in stochastic surrounding traffic

Vehicle under Test

Scene in traffic simulator SUMO

Scene in visualization of DYNA4
Use-Case: Explorative Testing of a Highway Pilot

OSI

Input

Simulation & Workflows

System under Test

optional: custom sensor model

Output

DYNA4

ASAM OpenDRIVE

ASAM OpenSCENARIO

ASAM XiL API

ASAM OSI

ASAM MDF
Use-Case: Explorative Testing of a Highway Pilot

Simulated Sensor Data

- Sensors are crucial for environment perception of ADAS/AD algorithms

- Simulator provides sensor data depending on boundaries of system under test:
 - (sensor-specific) **object lists** or
 - technology-specific **raw data**

- Object lists are often sufficient for closed-loop simulation

- But **mapping them across tools is tedious!**
 - Reference coordinate systems
 - Object types
 - ...
Use-Case: Explorative Testing of a Highway Pilot

Example: Testing the Sensor Fusion ECU (Hardware)

Planned for 2020:
- Sending object lists from DYNA4 as OSI Byte Array
- Receiving OSI Byte Array in CANoe
- OSI conform object list definition within CANoe
Use-Case: Explorative Testing of a Highway Pilot

Example: Testing the Sensor Fusion ECU (Software)

Planned for 2020:
- Sending object lists from DYNA4 as OSI Byte Array
- Receiving OSI Byte Array in CANoe
- OSI conform object list definition within CANoe
Use-Case: Explorative Testing of a Highway Pilot

Execution of DYNA4 Models in other Environment

- Authoring of Models, Parameters and Scenarios with DYNA4 Studio
- Headless Execution of DYNA4 Run in other environment: ADTF, CANoe, ROS, Windows / Linux Executable, ...
Use-Case: Explorative Testing of a Highway Pilot

C2X Simulation in CANoe executing a DYNA4 Model with SUMO

Vehicle under Test
Use-Case: Explorative Testing of a Highway Pilot

MDF
Use-Case: Explorative Testing of a Highway Pilot

Standardized result data analysis with MDF

- Many scenarios and many virtually driven kilometers generate a lot of data
- Generation of MDF files as result data files for seamless result data analysis without conversion
- DYNA4 MDF support: Q2 2020
Open Standards for the Simulation of Automated Driving

- Single vehicle
- Simple and short scenario
- Interaction with environment only through road contact
- Simple animation for verification purposes
- Stand-alone usage on a desktop machine

- Deterministic traffic, stochastic traffic and multiple vehicles under test.
- Complex scenarios based on OpenDRIVE to reflect real-world driving. Soon: OpenSCENARIO.
- Detailed environment simulation and sensor models on different levels. Soon: Support of Open Simulation Interface.
- Flexible integration in existing toolchains through interfaces or headless model runtimes. Soon: Result analysis based on MDF.

Multiple Vehicles under Test in Platooning setup

Lidar point cloud displayed in ROS RViz
Thank you for your attention.

Any questions?
For more information about Vector and our products please visit

www.vector.com

Author:
Dr. Jakob Kaths
Vector Germany